Friday, 27 April 2018

Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases

CNS Drugs December 2017, Volume 31, Issue 12, pp 1029–1041 Authors Authors and affiliations Ana B. Ramos-HrybFrancis L. PaziniManuella P. KasterAna Lúcia S. RodriguesEmail author Ana B. Ramos-Hryb 1 Francis L. Pazini 1 Manuella P. Kaster 1 Ana Lúcia S. Rodrigues 1Email authorView author's OrcID profile 1.Department of Biochemistry, Center for Biological SciencesUniversidade Federal de Santa CatarinaFlorianópolisBrazil Leading Article First Online: 02 November 2017 135 Downloads 1 Citations Abstract Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases. This is a preview of subscription content, log in to check access. Notes Acknowledgements The authors thank Servier Medical Art for providing images for Figs. 2 and 3. Compliance with Ethical Standards Funding The authors acknowledge funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), #308723/2013-9 and #449436/2014-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, NENASC Project (PRONEX-FAPESC/CNPq) #1262/2012-9. Manuella P. Kaster and Ana Lúcia S. Rodrigues are CNPq Research Fellows. Conflict of interest Ana B. Ramos-Hryb, Francis L. Pazini, Manuella P. Kaster, and Ana Lúcia S. Rodrigues have no conflicts of interest directly relevant to the content of this article. References 1. Chin JH, Vora N. The global burden of neurologic diseases. Neurology. 2014;83(4):349–51.PubMedPubMedCentralCrossRefGoogle Scholar 2. Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One. 2015;10(2):e0116820.PubMedPubMedCentralCrossRefGoogle Scholar 3. Tang SW, Helmeste DM, Leonard BE. Neurodegeneration, neuroregeneration, and neuroprotection in psychiatric disorders. Mod Trends Pharmacopsychiatry. 2017;31:107–23.PubMedCrossRefGoogle Scholar 4. Liu J. Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol. 2005;100(1–2):92–4.PubMedCrossRefGoogle Scholar 5. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A. Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol. 2013;85(11):1579–87.PubMedCrossRefGoogle Scholar 6. Wozniak L, Skapska S, Marszalek K. Ursolic acid: a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20(11):20614–41.PubMedCrossRefGoogle Scholar 7. Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;146:201–13.PubMedCrossRefGoogle Scholar 8. Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer. 2007;7(5):357–69.PubMedCrossRefGoogle Scholar 9. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23(3):394–411.PubMedCrossRefGoogle Scholar 10. Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie. 2005;60(1):62–5.PubMedGoogle Scholar 11. Szakiel A, Paczkowski C, Pensec F, Bertsch C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem Rev. 2012;11(2–3):263–84.PubMedPubMedCentralCrossRefGoogle Scholar 12. Szakiel A, Pączkowski C, Huttunen S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J Agric Food Chem. 2012;60(48):11839–49.PubMedCrossRefGoogle Scholar 13. Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants: rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14(6):2016–31.PubMedCrossRefGoogle Scholar 14. Lee S, Kim BK, Cho SH, Shin KH. Phytochemical constituents from the fruits of Acanthopanax sessiliflorus. Arch Pharm Res. 2002;25(3):280–4.PubMedCrossRefGoogle Scholar 15. González-Trujano ME, Ventura-Martínez R, Chávez M, Díaz-Reval I, Pellicer F. Spasmolytic and antinociceptive activities of ursolic acid and acacetin identified in Agastache mexicana. Planta Med. 2012;78(8):793–6.PubMedCrossRefGoogle Scholar 16. Verano J, González-Trujano ME, Déciga-Campos M, Ventura-Martínez R, Pellicer F. Ursolic acid from Agastache mexicana aerial parts produces antinociceptive activity involving TRPV1 receptors, cGMP and a serotonergic synergism. Pharmacol Biochem Behav. 2013;110:255–64.PubMedCrossRefGoogle Scholar 17. Caligiani A, Malavasi G, Palla G, Marseglia A, Tognolini M, Bruni R. A simple GC-MS method for the screening of betulinic, corosolic, maslinic, oleanolic and ursolic acid contents in commercial botanicals used as food supplement ingredients. Food Chem. 2013;136(2):735–41.PubMedCrossRefGoogle Scholar 18. Hong SY, Jeong WS, Jun M. Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules. 2012;17(9):10831–45.PubMedCrossRefGoogle Scholar 19. Tapondjou LA, Lontsi D, Sondengam BL, Choi J, Lee KT, Jung HJ, et al. In vivo anti-nociceptive and anti-inflammatory effect of the two triterpenes, ursolic acid and 23-hydroxyursolic acid, from Cussonia bancoensis. Arch Pharm Res. 2003;26(2):143–6.PubMedCrossRefGoogle Scholar 20. Rollinger JM, Kratschmar DV, Schuster D, Pfisterer PH, Gumy C, Aubry EM, et al. 11beta-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorg Med Chem. 2010;18(4):1507–15.PubMedCrossRefGoogle Scholar 21. Kim JH, Kim GH, Hwang KH. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther (Seoul). 2012;20(2):214–9.PubMedPubMedCentralCrossRefGoogle Scholar 22. Prediger RD, Fernandes MS, Rial D, Wopereis S, Pereira VS, Bosse TS, et al. Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory. J Ethnopharmacol. 2008;120(3):465–73.PubMedCrossRefGoogle Scholar 23. Chattopadhyay D, Arunachalam G, Mandal SC, Bhadra R, Mandal AB. CNS activity of the methanol extract of Mallotus peltatus (Geist) Muell Arg. leaf: an ethnomedicine of Onge. J Ethnopharmacol. 2003;85(1):99–105.PubMedCrossRefGoogle Scholar 24. Ibarra A, Feuillere N, Roller M, Lesburgere E, Beracochea D. Effects of chronic administration of Melissa officinalis L. extract on anxiety-like reactivity and on circadian and exploratory activities in mice. Phytomedicine. 2010;17(6):397–403.PubMedCrossRefGoogle Scholar 25. Shen D, Pan MH, Wu QL, Park CH, Juliani HR, Ho CT, et al. A rapid LC/MS/MS method for the analysis of nonvolatile antiinflammatory agents from Mentha spp. J Food Sci. 2011;76(6):C900–8.PubMedCrossRefGoogle Scholar 26. Vasconcelos MA, Royo VA, Ferreira DS, Crotti AE, Andrade e Silva ML, Carvalho JC, et al. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). Z Naturforsch C. 2006;61(7–8):477–82.PubMedGoogle Scholar 27. Taviano MF, Miceli N, Monforte MT, Tzakou O, Galati EM. Ursolic acid plays a role in Nepeta sibthorpii Bentham CNS depressing effects. Phytother Res. 2007;21(4):382–5.PubMedCrossRefGoogle Scholar 28. Jothie Richard E, Illuri R, Bethapudi B, Anandhakumar S, Bhaskar A, Chinampudur Velusami C, et al. Anti-stress activity of Ocimum sanctum: possible effects on hypothalamic-pituitary-adrenal axis. Phytother Res. 2016;30(5):805–14.PubMedCrossRefGoogle Scholar 29. Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim Y, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells. 2001;11(2):137–43.PubMedGoogle Scholar 30. Heo HJ, Cho HY, Hong B, Kim HK, Heo TR, Kim EK, et al. Ursolic acid of Origanum majorana L. reduces Abeta-induced oxidative injury. Mol Cells. 2002;13(1):5–11.PubMedGoogle Scholar 31. Jetter R, Schäffer S. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol. 2001;126(4):1725–37.PubMedPubMedCentralCrossRefGoogle Scholar 32. Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem. 2013;136(2):999–1005.PubMedCrossRefGoogle Scholar 33. Machado DG, Neis VB, Balen GO, Colla A, Cunha MP, Dalmarco JB, et al. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav. 2012;103(2):204–11.PubMedCrossRefGoogle Scholar 34. Çulhaoğlu B, Yapar G, Dirmenci T, Topçu G. Bioactive constituents of Salvia chrysophylla Stapf. Nat Prod Res. 2013;27(4–5):438–47.PubMedCrossRefGoogle Scholar 35. González-Cortazar M, Maldonado-Abarca AM, Jiménez-Ferrer E, Marquina S, Ventura-Zapata E, Zamilpa A, et al. Isosakuranetin-5-O-rutinoside: a new flavanone with antidepressant activity isolated from Salvia elegans Vahl. Molecules. 2013;18(11):13260–70.PubMedCrossRefGoogle Scholar 36. Bahadori MB, Dinparast L, Valizadeh H, Farimani MM, Ebrahimi SN. Bioactive constituents from roots of Salvia syriaca L.: acetylcholinesterase inhibitory activity and molecular docking studies. S Afr J Bot. 2016;106:1–4.CrossRefGoogle Scholar 37. Kowalski R. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. J Agric Food Chem. 2007;55(3):656–62.PubMedCrossRefGoogle Scholar 38. Novotny L, Abdel-Hamid ME, Hamza H, Masterova I, Grancai D. Development of LC-MS method for determination of ursolic acid: application to the analysis of ursolic acid in Staphylea holocarpa Hemsl. J Pharm Biomed Anal. 2003;31(5):961–8.PubMedCrossRefGoogle Scholar 39. Rowe EJ, Orr JE. Isolation of oleanolic acid and ursolic acid from Thymus vulgaris L. J Am Pharm Assoc Am Pharm Assoc. 1949;38(3 Pt. 1):122–4.Google Scholar 40. Chandramu C, Manohar RD, Krupadanam DG, Dashavantha RV. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phytother Res. 2003;17(2):129–34.PubMedCrossRefGoogle Scholar 41. Leal AS, Wang R, Salvador JA, Jing Y. Synthesis of novel ursolic acid heterocyclic derivatives with improved abilities of antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic cancer cells. Bioorg Med Chem. 2012;20(19):5774–86.PubMedCrossRefGoogle Scholar 42. Dar BA, Lone AM, Shah WA, Qurishi MA. Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents. Eur J Med Chem. 2016;111:26–32.PubMedCrossRefGoogle Scholar 43. Wojciak-Kosior M. Separation and determination of closely related triterpenic acids by high performance thin-layer chromatography after iodine derivatization. J Pharm Biomed Anal. 2007;45(2):337–40.PubMedCrossRefGoogle Scholar 44. Shanmugam MK, Ong TH, Kumar AP, Lun CK, Ho PC, Wong PT, et al. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. PLoS One. 2012;7(3):e32476.PubMedPubMedCentralCrossRefGoogle Scholar 45. Chen Q, Luo S, Zhang Y, Chen Z. Development of a liquid chromatography-mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Anal Bioanal Chem. 2011;399(8):2877–84.PubMedCrossRefGoogle Scholar 46. Wang XH, Zhou SY, Qian ZZ, Zhang HL, Qiu LH, Song Z, et al. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin Drug Metab Toxicol. 2013;9(2):117–25.PubMedCrossRefGoogle Scholar 47. Zhu Z, Qian Z, Yan Z, Zhao C, Wang H, Ying G. A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int J Nanomedicine. 2013;8:129–36.PubMedPubMedCentralGoogle Scholar 48. Qian Z, Wang X, Song Z, Zhang H, Zhou S, Zhao J, et al. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. Biomed Res Int. 2015;2015:809714.PubMedPubMedCentralGoogle Scholar 49. Shanmugam MK, Manu KA, Ong TH, Ramachandran L, Surana R, Bist P, et al. Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. Int J Cancer. 2011;129(7):1552–63.PubMedCrossRefGoogle Scholar 50. Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res. 2007;5(9):943–55.PubMedCrossRefGoogle Scholar 51. Shan JZ, Xuan YY, Ruan SQ, Sun M. Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin J Integr Med. 2011;17(8):607–11.PubMedCrossRefGoogle Scholar 52. Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res. 2012;18(18):4942–53.PubMedPubMedCentralCrossRefGoogle Scholar 53. Tokuda H, Ohigashi H, Koshimizu K, Ito Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 1986;33(3):279–85.PubMedCrossRefGoogle Scholar 54. De Angel RE, Smith SM, Glickman RD, Perkins SN, Hursting SD. Antitumor effects of ursolic acid in a mouse model of postmenopausal breast cancer. Nutr Cancer. 2010;62(8):1074–86.PubMedCrossRefGoogle Scholar 55. Monteiro MC, Coleman MD, Hill EJ, Prediger RD, Maia CS. Neuroprotection in neurodegenerative disease: from basic science to clinical applications. Oxid Med Cell Longev. 2017;2017:2949102.PubMedPubMedCentralCrossRefGoogle Scholar 56. Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model: Parkinson’s disease. Trends Mol Med. 2003;9(8):360–5.PubMedCrossRefGoogle Scholar 57. Falkenburger BH, Saridaki T, Dinter E. Cellular models for Parkinson’s disease. J Neurochem. 2016;139(Suppl. 1):121–30.PubMedCrossRefGoogle Scholar 58. Tsai SJ, Yin MC. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J Food Sci. 2008;73(7):H174–8.PubMedCrossRefGoogle Scholar 59. Keeney PM, Xie J, Capaldi RA, Bennett JP. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006;26(19):5256–64.PubMedCrossRefGoogle Scholar 60. Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol. 2008;64(5):555–65.PubMedPubMedCentralCrossRefGoogle Scholar 61. Yealland G, Battaglia G, Bandmann O, Mortiboys H. Rescue of mitochondrial function in parkin-mutant fibroblasts using drug loaded PMPC-PDPA polymersomes and tubular polymersomes. Neurosci Lett. 2016;630:23–9.PubMedPubMedCentralCrossRefGoogle Scholar 62. Zheng XY, Zhang HL, Luo Q, Zhu J. Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol. 2011;2011:457079.PubMedCrossRefGoogle Scholar 63. Shih YH, Chein YC, Wang JY, Fu YS. Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats. Neurosci Lett. 2004;362(2):136–40.PubMedCrossRefGoogle Scholar 64. Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimers Dement (Amst). 2017;7:69–87.PubMedPubMedCentralGoogle Scholar 65. Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–31.PubMedCrossRefGoogle Scholar 66. Bredesen DE. Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence. Mol Neurodegener. 2009;4:27.PubMedPubMedCentralCrossRefGoogle Scholar 67. Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int. 2017;67(4):185–93.PubMedCrossRefGoogle Scholar 68. Hane FT, Lee BY, Leonenko Z. Recent progress in Alzheimer’s disease research. Part 1: pathology. J Alzheimers Dis. 2017;57(1):1–28.PubMedCrossRefGoogle Scholar 69. Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s disease. Front Mol Neurosci. 2016;9:118.PubMedPubMedCentralCrossRefGoogle Scholar 70. Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem. 2011;286(40):34914–22.PubMedPubMedCentralCrossRefGoogle Scholar 71. Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-Coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25-35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. J Agric Food Chem. 2014;62(21):4911–6.PubMedCrossRefGoogle Scholar 72. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromol Med. 2010;12(1):1–12.CrossRefGoogle Scholar 73. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, et al. Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry. 2009;14(5):469–86.PubMedCrossRefGoogle Scholar 74. Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther. 2014;6(9):89.PubMedPubMedCentralCrossRefGoogle Scholar 75. Youn K, Jun M. Inhibitory effects of key compounds isolated from Corni fructus on BACE1 activity. Phytother Res. 2012;26(11):1714–8.PubMedCrossRefGoogle Scholar 76. Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol. 2002;160(1):101–12.PubMedPubMedCentralCrossRefGoogle Scholar 77. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11(2):155–61.PubMedCrossRefGoogle Scholar 78. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;1:CD005593.Google Scholar 79. Esch T, Stefano GB, Fricchione GL, Benson H. The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett. 2002;23(3):199–208.PubMedGoogle Scholar 80. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialog Clin Neurosci. 2006;8(4):383–95.Google Scholar 81. Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, et al. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009;58(11):2506–15.PubMedPubMedCentralCrossRefGoogle Scholar 82. Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev. 2013;93(3):1139–206.PubMedPubMedCentralCrossRefGoogle Scholar 83. Singla RK, Scotti L, Dubey AK. In silico studies revealed multiple neurological targets for the antidepressant molecule ursolic acid. Curr Neuropharmacol. 2016 (Epub ahead of print).Google Scholar 84. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7(4):295–309.PubMedCrossRefGoogle Scholar 85. Nyola A, Karpowich NK, Zhen J, Marden J, Reith ME, Wang DN. Substrate and drug binding sites in LeuT. Curr Opin Struct Biol. 2010;20(4):415–22.PubMedPubMedCentralCrossRefGoogle Scholar 86. Levin EY, Levenberg B, Kaufman S. The enzymatic conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J Biol Chem. 1960;235:2080–6.PubMedGoogle Scholar 87. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65(4):304–12.PubMedPubMedCentralCrossRefGoogle Scholar 88. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose. Biochem Pharmacol. 2007;74(7):1078–90.PubMedCrossRefGoogle Scholar 89. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, et al. Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice. Brain Behav Immun. 2011;25(8):1658–67.PubMedCrossRefGoogle Scholar 90. Wang YJ, Lu J, Wu DM, Zheng ZH, Zheng YL, Wang XH, et al. Ursolic acid attenuates lipopolysaccharide-induced cognitive deficits in mouse brain through suppressing p38/NF-κB mediated inflammatory pathways. Neurobiol Learn Mem. 2011;96(2):156–65.PubMedCrossRefGoogle Scholar 91. Ennaceur A. Tests of unconditioned anxiety: pitfalls and disappointments. Physiol Behav. 2014;135:55–71.PubMedCrossRefGoogle Scholar 92. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55(2):310–32.PubMedPubMedCentralCrossRefGoogle Scholar 93. Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, et al. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res. 2013;1497:32–9.PubMedCrossRefGoogle Scholar 94. Wang Y, He Z, Deng S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des Devel Ther. 2016;10:1663–74.PubMedPubMedCentralCrossRefGoogle Scholar 95. Wei H, Li L, Song Q, Ai H, Chu J, Li W. Behavioural study of the d-galactose induced aging model in C57BL/6J mice. Behav Brain Res. 2005;157(2):245–51.PubMedCrossRefGoogle Scholar 96. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Ye Q, et al. Ursolic acid attenuates d-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-κB pathway activation. Cereb Cortex. 2010;20(11):2540–8.PubMedCrossRefGoogle Scholar 97. Zhang T, Su J, Guo B, Zhu T, Wang K, Li X. Ursolic acid alleviates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway. Int Immunopharmacol. 2014;23(2):585–91.PubMedCrossRefGoogle Scholar 98. Zhang T, Su J, Wang K, Zhu T, Li X. Ursolic acid reduces oxidative stress to alleviate early brain injury following experimental subarachnoid hemorrhage. Neurosci Lett. 2014;579:12–7.PubMedCrossRefGoogle Scholar 99. Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res. 2017;42(2):337–46.PubMedCrossRefGoogle Scholar 100. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376–85.PubMedPubMedCentralGoogle Scholar 101. Wu DM, Lu J, Zhang YQ, Zheng YL, Hu B, Cheng W, et al. Ursolic acid improves domoic acid-induced cognitive deficits in mice. Toxicol Appl Pharmacol. 2013;271(2):127–36.PubMedCrossRefGoogle Scholar 102. Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–9.PubMedCrossRefGoogle Scholar 103. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10(7):519–29.PubMedCrossRefGoogle Scholar 104. Nitta A, Itoh A, Hasegawa T, Nabeshima T. beta-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett. 1994;170(1):63–6.PubMedCrossRefGoogle Scholar 105. Takeda S, Sato N, Niisato K, Takeuchi D, Kurinami H, Shinohara M, et al. Validation of Abeta1-40 administration into mouse cerebroventricles as an animal model for Alzheimer disease. Brain Res. 2009;1280:137–47.PubMedCrossRefGoogle Scholar 106. Liang W, Zhao X, Feng J, Song F, Pan Y. Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq Neuropsiquiatr. 2016;74(6):482–8.PubMedCrossRefGoogle Scholar 107. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121–47.PubMedPubMedCentralCrossRefGoogle Scholar 108. Colla AR, Oliveira A, Pazini FL, Rosa JM, Manosso LM, Cunha MP, et al. Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacol Biochem Behav. 2014;124:108–16.PubMedCrossRefGoogle Scholar 109. Marks DM, Pae CU, Patkar AA. Triple reuptake inhibitors: the next generation of antidepressants. Curr Neuropharmacol. 2008;6(4):338–43.PubMedPubMedCentralCrossRefGoogle Scholar 110. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, et al. Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006;354(12):1243–52.PubMedCrossRefGoogle Scholar 111. Bodkin JA, Lasser RA, Wines JD Jr, Gardner DM, Baldessarini RJ. Combining serotonin reuptake inhibitors and bupropion in partial responders to antidepressant monotherapy. J Clin Psychiatry. 1997;58(4):137–45.PubMedCrossRefGoogle Scholar 112. Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med Chem. 2015;7(17):2385–406.PubMedPubMedCentralCrossRefGoogle Scholar 113. Skolnick P, Krieter P, Tizzano J, Basile A, Popik P, Czobor P, et al. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev. 2006;12(2):123–34.PubMedCrossRefGoogle Scholar 114. Beer B, Stark J, Krieter P, Czobor P, Beer G, Lippa A, et al. DOV 216,303, a “triple” reuptake inhibitor: safety, tolerability, and pharmacokinetic profile. J Clin Pharmacol. 2004;44(12):1360–7.PubMedCrossRefGoogle Scholar 115. Ramos-Hryb AB, Cunha MP, Pazini FL, Lieberknecht V, Prediger RD, Kaster MP, et al. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep. 2017. doi: 10.1016/j.pharep.2017.05.009. 116. Popoli M, Brunello N, Perez J, Racagni G. Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem. 2000;74(1):21–33.PubMedCrossRefGoogle Scholar 117. Hettema JM. What is the genetic relationship between anxiety and depression? Am J Med Genet C Semin Med Genet. 2008;148C(2):140–6.PubMedCrossRefGoogle Scholar 118. Colla AR, Rosa JM, Cunha MP, Rodrigues AL. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol. 2015;758:171–6.PubMedCrossRefGoogle Scholar 119. Jeon SJ, Park HJ, Gao Q, Pena IJ, Park SJ, Lee HE, et al. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice. Eur J Pharmacol. 2015;762:443–8.PubMedCrossRefGoogle Scholar 120. Anderson KN, Bradley AJ. Sleep disturbance in mental health problems and neurodegenerative disease. Nat Sci Sleep. 2013;5:61–75.PubMedPubMedCentralCrossRefGoogle Scholar 121. Leung AY, Foster S. Encyclopedia of common natural ingredients used in food, drug and cosmetics. 2nd ed. New York: Wiley; 1996.Google Scholar 122. Xia Y, Wei G, Si D, Liu C. Quantitation of ursolic acid in human plasma by ultra performance liquid chromatography tandem mass spectrometry and its pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(2):219–24.PubMedCrossRefGoogle Scholar 123. Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, et al. Ursolic acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol. 2014;18(5):441–6.PubMedPubMedCentralCrossRefGoogle Scholar 124. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–59.PubMedPubMedCentralCrossRefGoogle Scholar 125. Moon HS, Dincer F, Mantzoros CS. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism. 2013;62(8):1131–6.PubMedPubMedCentralCrossRefGoogle Scholar 126. Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, et al. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat. 2017;27(9):1061–72.PubMedCrossRefGoogle Scholar 127. Zhao W, Zhang H, Wang H, Tang X, Wu J. Caffeoyl substituted pentacyclic triterpene derivative and use thereof. Google Patents; 2014.Google Scholar 128. Ting A, Milne JC, Jirousek MR, Bemis JE, Vu CB. Fatty acid triterpene derivatives and their uses. Google Patents; 2012.Google Scholar 129. Kuang C, Xiao Y, Hondmann D. Nutritional composition containing a neurologic component of ursolic acid. Google Patents; 2015.Google Scholar Copyright information © Springer International Publishing AG 2017 About this article CrossMark Cite this article as: Ramos-Hryb, A.B., Pazini, F.L., Kaster, M.P. et al. CNS Drugs (2017) 31: 1029.