Friday, 27 October 2017
The Flower Tea Coreopsis tinctoria Increases Insulin Sensitivity and Regulates Hepatic Metabolism in Rats Fed a High-Fat Diet
Endocrinology. 2015 Jun;156(6):2006-18. doi: 10.1210/en.2015-1015. Epub 2015 Mar 16.
Jiang B1, Le L, Wan W, Zhai W, Hu K, Xu L, Xiao P.
Author information
1
Institute of Medicinal Plant Development (B.J., L.L., W.W., W.Z., K.H., L.X., P.X.), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100194, China; and Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (B.J., W.W., L.X., P.X.), Ministry of Education, Beijing 100194, China.
Abstract
An infusion of Coreopsis tinctoria (CT) flowering tops is traditionally used in Portugal to control hyperglycemia; however, the effects of CT protection against high-fat diet (HFD)-induced hepatic insulin resistance have not been systematically studied and the precise mechanism of action is not clear. The metabolomic profiles of insulin-resistant rats fed a HFD and a CT-supplemented diet (HFD supplemented with CT drinking) for 8 weeks were investigated. Serum samples for clinical biochemistry and liver samples for histopathology and liquid chromatography-mass spectrometry-based metabolomic research were collected. Western blot and quantitative real-time PCR analyses were further used to measure the expression of several relevant enzymes together with perturbed metabolic pathways. Using analysis software, the CT treatment was found to significantly ameliorate the disturbance in 10 metabolic pathways. Combined metabolomic, Western blot, and quantitative real-time PCR analyses revealed that CT treatment significantly improved the glucose homeostasis by, on the one hand, through inhibiting the expression of gluconeogenic pathway key proteins glucose-6-phosphatase and phosphoenolpyruvate carboxykinase and, on the other hand, via regulating the mRNA or protein levels of the Krebs cycle critical enzymes (citrate synthase, succinate dehydrogenase complex, subunit A, flavoprotein, and dihydrolipoamide S-succinyltransferase). These results provide metabolic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and that the supplementation with CT improves insulin resistance at a global scale. Liquid chromatography-mass spectrometry-based metabolomics approaches are helpful to further understand diabetes-related mechanisms.
PMID: 25774555 DOI: 10.1210/en.2015-1015