twitter

Sunday, 29 July 2018

Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts.

Molecules. 2018 Jul 18;23(7). pii: E1767. doi: 10.3390/molecules23071767. Kosakowska O1, Bączek K2, Przybył JL3, Pióro-Jabrucka E4, Czupa W5, Synowiec A6, Gniewosz M7, Costa R8, Mondello L9,10, Węglarz Z11. Author information 1 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. olga_kosakowska@sggw.pl. 2 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. katarzyna_baczek@sggw.pl. 3 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. jaroslaw_przybyl@sggw.pl. 4 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. ewelina_pioro_jabrucka@sggw.pl. 5 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. w.czupa@gmail.com. 6 Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. alicja_synowiec@sggw.pl. 7 Dipartimento di Scienze Biomediche, Odontoiatriche, e Delle Immagini Morfologiche e Funzionali (BIOMORF), University of Messina, 98122 Messina, Italy. malgorzata_gniewosz@sggw.pl. 8 Dipartimento di Scienze Biomediche, Odontoiatriche, e Delle Immagini Morfologiche e Funzionali (BIOMORF), University of Messina, 98122 Messina, Italy. costar@unime.it. 9 Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, 98122 Messina, Italy. zenon_weglarz@sggw.pl. 10 Chromaleont s.r.l., a Start-Up of the University of Messina, 98122 Messina, Italy. zenon_weglarz@sggw.pl. 11 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland. zenon_weglarz@sggw.pl. Abstract Roseroot (Rhodiola rosea L.) belongs to plants revealing adaptogenic properties, which are attributed to the presence of specific phenolic compounds and are reflected mainly as antioxidant activity. The aim of the present study was to determine the antioxidant and antibacterial activity of various products obtained from R. rosea (underground organs as well as their aqueous and ethanolic dry extracts) in relation to the chemical profiles of phenolic and essential oil compounds. The chemical profiles were determined by High-performance Liquid Chromatography with a diode-array detector (HPLC-DAD) and Gas chromatography-mass spectrometry (GC-MS), antioxidant activity by (1,1-Diphenyl-2-picrylhydrazyl) Scavenging Capacity Assay (DPPH), (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) Scavenging Capacity Assay (ABTS) and Ferric Reducing Antioxidant Power Assay (FRAP) and antimicrobial properties were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) values following the broth microdilutions method. The results show that the investigated samples differed in terms of their chemical compositions and biological activities. The extracts were more abundant in phenolic compounds (salidroside, tyrosol, and rosavin derivatives) in comparison to dried underground organs. The content of the determined phenolics in the analyzed extracts was affected by the solvent used for extraction. The ethanolic extract was characterized by the highest content of these substances in comparison to the aqueous one and the dried raw material, especially with regard to rosavin (969.71 mg/100 g). In parallel, this extract showed the strongest antioxidant and antibacterial activity. However, dried R. rosea underground organs also revealed strong antibacterial effects against, for example, Staphylococcus strains. KEYWORDS: antibacterial activity; antioxidant power; dry extracts; essential oil; geraniol; rosavins; roseroot; salidroside; underground organs PMID: 30022015 DOI: 10.3390/molecules23071767 Free full text