Volume 192, 4 November 2016, Pages 524–534
- a Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
- b Biosciences Eastern & Central Africa – International Livestock Research Institute, Old Naivasha Road, PO Box 30709, 00100 Nairobi, Kenya
- c Department of Chemistry, School of Physical Sciences, University of Nairobi, P.O Box 30197, Nairobi, Kenya
- d Department of Pharmacology and Pharmacognosy, School of Pharmacy, University of Nairobi, P.O Box 30197, Nairobi, Kenya
- Received 24 March 2016, Revised 23 August 2016, Accepted 16 September 2016, Available online 17 September 2016
- Open Access funded by Bill & Melinda Gates Foundation
- Under a Creative Commons license
Open Access
Highlights
- •
- Ethno-medicinal Plants from Kenyan Flora for treating ruminants respiratory symptoms.
- •
- Solanumaculeastrum and Albiziacoriariawith highest antimycoplasmal activities.
- •
- The MICs mean values of the active extracts varied from 0.02–0.6 mg/ml.
Abstract
Ethnopharmocological relevance
Members of ‘Mycoplasma mycoides cluster’ are important ruminant pathogens in Africa. Diseases caused by these Mycoplasma
negatively affect the agricultural sector especially in developing
countries through losses in livestock productivity, mortality and
international trade restrictions. There is therefore urgent need to
develop antimicrobials from alternative sources such as medicinal plants
to curb these diseases. In Kenya, smallholder farmers belonging to the
Maasai, Kuria and Luo rely on traditional Kenyan herbals to treat
respiratory symptoms in ruminants. In the current study extracts from
some of these plants were tested against the growth of members of Mycoplasma mycoides cluster.
Aim
This study aimed at identifying plants that exhibit antimycoplasmal activities using an ethnobotanical approach.
Materials and methods
Kenyan
farmers of Maasai, Luo and Kuria ethnic groups were interviewed for
plant remedies given to livestock with respiratory syndromes. The plant
materials were thereafter collected and crude extracts prepared using a
mixture of 50% of methanol (MeOH) in dichloromethane (CH2Cl2), neat methanol (MeOH), ethanol (EtOH) and water to yield four crude extracts per plant part. The extracts were tested in vitro against five strains of Mycoplasma mycoides subsp. capri, five strains of Mycoplasma mycoides subsp. mycoides and one strain of Mycoplasma capricolum subsp capricolum
using broth micro-dilution assays with an initial concentration of
1 mg/ml. Minimum inhibitory concentration (MIC) of the most active
extracts were determined by serial dilution.
Results
Extracts from five plants namely: Solanum aculeastrum, Albizia coriaria, Ekebergia capensis, Piliostigma thonningii and Euclea divinorum exhibited the highest activities against the Mycoplasma strains tested. Mycoplasma mycoides subsp. mycoides were more susceptible to these extracts than Mycoplasma mycoides subsp. capri and Mycoplasma capricolum susp. capricolum.
The activities of the crude extracts varied with the solvent used for
extraction. The MICs mean values of the active extracts varied from 0.02
to 0.6 mg/ml.
Conclusions
The
results suggested that these plants could potentially contain
antimicrobial compounds that might be useful for the treatment of
respiratory diseases in ruminants. Future work should focus on the
isolation and identification of the active compounds from the plant
extracts that showed interesting activities and evaluation of their
antimicrobial and cytotoxic potential.
Keywords
- Mycoplasma mycoides;
- Ethnobotany;
- Antimicrobial activity;
- Livestock;
- Ethno-medicinal from plants from Kenya
1. Introduction
Bacteria of the genus Mycoplasma are cell wall-less bacteria and are severe pathogens to humans and animals worldwide. The so-called ‘Mycoplasma mycoides cluster’ comprises five ruminant pathogens including: Mycoplasma mycoides subsp. mycoides, Mycoplasma mycoides subsp. capri, Mycoplasma capricolum subsp. capripneumoniae, Mycoplasma capricolum subsp. capricolum and Mycoplasma leachii ( Fischer et al., 2012). Mycoplasma mycoides subsp. mycoides and M. capricolum subsp. capricolum
are of highest economic importance as they are known to cause severe
respiratory diseases namely: contagious bovine pleuropneumonia (CBPP)
and contagious caprine pleuropneumonia (CCPP), respectively. These
diseases substantially affect the agricultural sector especially in
developing countries through losses in livestock productivity, mortality
and international trade restrictions. They are trans-boundary diseases
and constitute a threat to disease-free countries ( Tambi et al., 2006). Better measures are needed for the progressive control of diseases like CBPP in sub-Saharan Africa (Jores et al., 2013).
The Mycoplasma are resistant to many antimicrobials as they lack a cell wall. Antimicrobials widely used to treat infections with Mycoplasma include tetracyclines, macrolide-lincosamide-streptogramin-ketolide antibiotic group and fluoroquinolones ( Gruson et al., 2005; Renaudin, 2005). Lately, very high resistance levels against macrolides have been reported for the human pathogen Mycoplasma pneumonia in China ( Cao et al.., 2010). This demonstrates the build-up of acquired resistance within the genus Mycoplasma within a relatively short time ( Morozumi et al., 2008 ; Xin et al., 2009).
Increasing resistance against antimicrobials calls for the development
of new antimicrobial substances. An approach for the development of
novel antimicrobials is the use of ethno-botanical information in order
to characterize plant substances for their antimicrobial activity.
Traditional medicine based on medicinal plants in Africa is not only
used in the primary health care system for people living mainly in rural
areas in developing countries ( Njoroge et al., 2010 ; Owuor et al., 2012), but also to manage a wide variety of livestock diseases (Githiori et al., 2005; Ole-Miaron, 2003).
In
Kenya, farmers such as those belonging to the Maasai, Luo and Kuria
ethnic groups already rely on indigenous plants to treat livestock
diseases. This is in partly because antimicrobials are costly and not
stocked or accessible in many regions of sub-Saharan Africa (Planta, 2007 ; Tsigemelak et al., 2016). Selected medicinal plants listed by these smallholder farmers belong to different families namely: Mimosaceae,
Canellaceae, Oleaceae, Apocynaceae, Asteraceae, Ebenaceae, Fabaceae,
Anacardiaceae, Rhamnaceae, Verbenaceae, Solanaceae, Clusiaceae,
Curcubitaceae, Lamiaceae, and Rutaceae. This study sought to identify plants that exhibit antimycoplasmal activities using an ethno-botanical approach.
2. Materials and methods
2.1. Identification of medicinal plants used to treat respiratory livestock diseases
An ethnobotanical approach (Cox PA1, 1994; Martin., 2000)
was used, whereby farmers were interviewed on their ways of controlling
respiratory diseases such as CBPP using medicinal plants. The
questionnaire (Supplementary 1) and consent document (Supplementary 2)
was translated into the local language of the farmers to be
interviewed. Ethical clearance covering a period of one year (January
2014–January 2015) was obtained from the Ethical Review Committee at the
Kenya Medical Research Institute, which is registered in Kenya
(KEMRI/RES/7/3/1).
Livestock
farmers belonging to the three ethnic groups namely Massai, Luo and
Kuria were interviewed in Nairobi, Kiserian, Narok, Kisumu, Migori and
Kuria using a questionnaire. A total of twenty plants (Table 1) were identified and collected from different geographical regions (Fig. 1).
Plant/Family/voucher number Part used Ethnic group Local name Acacia xanthophloea/Mimosaceae/Fmk2012/01 Stem bark Maasai Olerai Albizia coriaria/Mimosaceae/Fmk2012/02 Stem bark Luo, Kuria and Maasai Ober, Lotoligo, Olerai Warbugia ugandensis/Canellaceae/Fmk2012/03 Stem bark, roots and leaves Maasai Ol-sogunoi Olea europaea subsp. africana/Oleaceae/Fmk2012/04 Stem and root barks Maasai OL-orien Ekebergia capensis/Meliaceae/Fmk2012/05 Stem bark Luo, Kuria Tido Carissa spinarum/Apocynaceae/Fmk2012/06 Stem bark, roots and fruits Luo, Kuria Ochuoga, Omunyore Tithonia diversifolia/Asteraceae/Fmk2012/07 Stem and leaves Luo, Kuria Maua makech, Irita kunguha Euclea divinarum/Ebenaceae/Fmk2012/08 Stem bark Luo, Kuria Ochond radoho/Ochol, Ikimusi Piliostigma thonningii/Fabaceae/Fmk2012/09 Stem bark, roots, twigs and leaves Luo, Maasai, Kuria Otagalo/Ogalo, Olsagararam, Egekobure Rhus vulgaris/Anacardiaceae/Fmk2012/10 Roots and fruits Luo, Kuria and Maasai Sangla maduong, Sangla, Ikinyororio, Engarani Ziziphus abyssinica/Rhamnaceae/Fmk2012/11 Roots, aerial part Luo, Kuria Lang’o Gutenbergia cordifolia/Asteraceae/Fmk2012/12 Leaves Luo, Kuria Akech, Ikiburua/Ikiburia Lantana trifolia/Verbenaceae/Fmk2012/13 Aerial part and/or the whole plants Luo, Kuria Nyabend winyo, Kehembwe/kebarisia Solanum aculeastrum/Solanaceae/Fmk2012/14 Fruits, roots Maasai, Luo and Kuria Osigawai, Ochok, Iri botoboto Garcinia buchananii/Clusiaceae/Fmk2012/15 Stem bark, roots Luo Onjak Tylosema fassoglensis/Fabaceae/Fmk2012/16 Roots Luo, Kuria Ombasa, Omombara Mormondica foestida/Cucurbitaceae/Fmk2012/17 Aerial parts Luo Omobora Fuerstia Africana/Lamiaceae/Fmk2012/18 Aerial part Kuria Ekebunga baare Toddalia asiática/Rutaceae/Fmk2012/19 Stem bark, roots and leaves Luo, Kuria Nyalwet-kwach, Urunisia Solanum incanum/Solanacea/Fmk2012/20 Fruits, roots and leaves Maasai, Luo and Kuria Endulelei, Ochok, Iritorotoro
2.2. Plant preparation and extraction
Plant
parts namely: leaves, roots, stems, stem bark or berries (about 1–2 kg
per plant part) were sampled and immediately transported in open
polythene bags from the collection site to the Department of Chemistry,
School of Physical Sciences (SPS), University of Nairobi. A voucher
number for each plant can be found at the School of Biological Sciences
(SBS), University of Nairobi Herbarium. Plant parts were dried at room
temperature without direct sunlight for three weeks and then ground into
fine powder using a MM 20 grinder (Wiley laboratory mill, standard
model No. 2, Arthur H. Thomas Company).
2.3. Extraction with selected organic solvents
The solvents used for the extraction process included MeOH, ethanol (EtOH) and a mixture of 50% MeOH in CH2Cl2.
The plant material (200 g) was mixed with 500 ml of each of the above
solvents in a glass beaker and soaked at room temperature for four
hours. After decantation, the insoluble phase was discarded. The
supernatant was transferred into a glass flask and concentrated to a
volume of about 2 ml using a rotary evaporator (Buchi R114) at 35 °C.
The mixture was then transferred into a 10 ml glass tube. The glass
flask was rinsed 2–3 times with approximately 1 ml of CH2Cl2
and the rinse was added to the 2 ml that were harvested before. The
concentrated supernatant (about 4 ml) was covered with a perforated
aluminium foil and stored to dryness at room temperature.
2.4. Extraction with water
Fresh
plant material (200 g) was boiled for 15 min and cooled at room
temperature. The mixture was transferred into a 50 ml flask and kept in a
freezer at −20 °C for 3 days. After three days, the mixture was removed
from the freezer and lyophilized using a freeze-drier (Christ Beta 336
Osterode/Harz) for a maximum period of four days. The dried crude
extracts were removed from the freeze-dryer and kept aside at room
temperature.
2.5. Preparation of crude extracts for antimycoplasmal activity tests
Crude
extracts (100 mg) from the organic solvents were reconstituted into
1 ml of dimethyl sulfoxide (DMSO) while the same amount of aqueous
extracts were reconstituted into 1 ml of water (100%) to make a stock
solution of 100 mg/ml. The mixture of each extract was prepared by
vortexing to ensure homogenization of the solution.
2.6. Bacterial strains and culture conditions
All laboratory manipulations with Mycoplasma were carried out under BSL2 conditions ( Mwirigi et al., 2016). Mycoplasma mycoides subsp. capri, Mycoplasma mycoides subsp. mycoides and Mycoplasma capricolum subsp capricolum ( Table 2 ; Table 3)
were cultured in Pleuropneumonia Like-Organism (PPLO) broth (Difco™
PPLO Broth) media prepared as follows: 21 g of PPLO was dissolved in
700 ml of distilled water and autoclaved for 15 min at 121 °C. The
mixture was cooled in a water bath to 55 °C and supplemented with phenol
red (Carl Roth GmbH) to a final concentration of 3%, 200 ml horse serum
(Sigma), 0.25% of glucose (Carl Roth GmbH), 0.15% of penicillin G (Carl
Roth GmbH) and 0.25% of thallium acetate (Carl Roth GmbH). A
forty-eight well plate was used to grow Mycoplasma strains where they were incubated at 37 °C for a minimum period of seven days. Growth of Mycoplasma cells was determined by color change from red to yellow ( Stemke and Robertson, 1982), as a result of pH change due to the growth of Mycoplasma strains. Stock cultures of both Mmc, Mmm and Mcc liquid cultures were grown to a density of approximately 1–3×106 cells per ml as measured by the colony forming units method (Stemke and Robertson, 1982) and cryopreserved at −80 °C.
Strains designation Species Country of origin Year of isolation Host Data Bank/Strain collection Y- Goat Mmc USA 1979 Goat GenBank G1313.94 Mmc Germany 1994 Sheep MH G1255-94 Mmc Berlin 1994 Sheep MH M-18 Mmc Croatia 1988 Goat CS 95010-C1 Mmc France 1995 Goat JF 6443-90 Mcc France 1990 Goat JF
Strains designation Species Country of origin Year of isolation Host Data Bank/Strain collection PG1 Mmm Africa 1931 Cattle JF V5 Mmm Australia 1935 Vaccine strain JF B237 Mmm Kenya 1997 Cattle HW Afade Mmm Cameroon 1968 Cattle JF Gladysdale Mmm Australia 1953 Cattle JF
2.7. Antimicrobial susceptibility testing
The broth microdilution method as described by Arjoon et al. (2012) was used to characterize the in vitro
antimycoplasmal activity of plant extracts and to determine the minimum
inhibitory concentrations employing serial dilutions of the plant
extracts. Briefly, a stock solution of 100 mg/ml was prepared and 10 µl
(1 mg) of the same was used as the initial concentration mixed with 1 ml
of cell culture (1 mg/ml) for the antibacterial test. A control sample
consisting of only the solvent included. After seven days of incubation,
the cultures were checked for color change from red to yellow, which is
an indication of Mycoplasma growth resulting from the change of pH. No color change meant that the crude extracts in the well prevented growth of Mycoplasma. Data were analysed using Graphprism software version 6.0.
2.8. Determination of the minimum inhibitory concentration (MIC)
Active
extracts were serially diluted in order to determine the minimum
inhibitory concentration (MIC), which was defined as the lowest
concentration that inhibited the growth of different Mycoplasma
strains for an incubation time of seven days to ensure complete
inhibition. The MICs of all the active extracts were determined by broth
microdilution as previously described by Arjoon et al. (2012)
starting from 1 mg/ml to 0.000005 mg/ml. The experiment was repeated
thrice for each assay and mean was recorded. The standard error of mean
was obtained at P <0.05.
3. Results
3.1. Interview
The results of the interview with 28 farmers from different parts of Kenya (Fig. 1)
showed that most of the farmers rely on medicinal plants to treat
ruminant respiratory diseases symptoms such as deep dry cough, extended
neck, fever and weight loss. As a result of the interview 20 different
plant species used as remedies were identified. The total number of
farmers interviewed and that of plants collected are presented in Table 4.
Interviewee Ethnic group Collection site Acacia xenthophloeae Albizia coriaria Carissa spinarum Ekebergia capensis Euclea divinarum Fuerstia africana Garcinia buchananii Guternbergia cordifolia Lantana trifolia I M 1 X II M 2 III M 3 X X IV M 4 V M 5 VI M 5 VII K 6 X X X VIII K 7 X X IX K 8 X X K 9 X XI K 10 X X X XII K 11 X X XIII K 11 X X XIV K 11 X XV K 11 X X XVI L 12 X X X X X X XVII L 12 X X X X XVIII L 13 X X X X X XIX L 14 X X X XX L 14 X XXI L 14 X X X X XXII L 15 X X X XXIII L 15 XXIV L 15 X XXV L 16 X XXVI L 16 X XXVII L 17 XXVIII L 17 X No. of plant mentioned 6 5 10 3 3 6 4 4 8
Mormondica foetida Olea europaea Pilostigma thonningii Rhus vulgaris Solanum aculeastrum Solanum incanum Tithonia diversifolia Toddalia asiatica Tylossema fassoglensis Warbugia ugandensis Ziziphus abyssinica No of plants reported X 2 X 1 2 0 X 1 X 1 3 X 3 X 2 1 3 2 2 X 2 X X X 5 X X X X 10 X X X X X 9 X X X 8 X X X X 7 X 2 X 5 X 4 X 1 X X 2 X 2 X X X 2 X X X 4 2 1 3 2 7 1 6 6 4 1 5
Whilst the interview was based on remedies against livestock respiratory symptoms (Table 5), the farmers’ responses included human diseases treated with these plants (See supplementary table 3).
Plant/Family/voucher number Part used Ethnic group Local name Disease treated Mode of preparation Acacia xanthophloea/Mimosaceae/Fmk2012/01 Stem bark Maasai Olerai Unspecified livestock diseases and coughs Infusion of the stem bark is administered to the sick animals Albizia coriaria/Mimosaceae/Fmk2012/02 Stem bark Luo, Kuria and Maasai Ober, Lotoligo, Olerai Livestock respiratory diseases Bark infusion for livestock used as treatment for livestock respiratory diseases Warbugia ugandensis/Canellaceae/Fmk2012/03 Stem bark, roots and leaves Maasai Ol-sogunoi Livestock respiratory diseases symptoms Infusion of the stem and Roots bark for livestock respiratory symptoms Olea europeae/Oleaceae/Fmk2012/04 Stem and root barks Maasai OL-orien Contagious Bovine Pleuropneumonia Root and stem bark infusion for CBPP Ekebergia capensis/Meliaceae/Fmk2012/05 Stem bark Luo, Kuria Tido Respiratory symptoms in livestock and remedy for worms Stem infusion for livestock diseases Carissa spinarum/Apocynaceae/Fmk2012/06 Stem bark, roots and fruits Luo, Kuria Ochuoga, Omunyore Unspecified livestock diseases An infusion of stem bark is treatment for livestock diseases Tithonia diversifolia/Asteraceae/Fmk2012/07 Stem and leaves Luo, Kuria Maua makech, Irita kunguha Management of weakness in livestock An infusion of the stems is used as remedy for the management of livestock weakness Euclea divinarum/Ebenaceae/Fmk2012/08 Stem bark Luo, Kuria Ochond radoho/Ochol, Ikimusi Treat join pain in livestock Decoction of the stem back an pain killer for livestock Piliostigma thonningii/Fabaceae/Fmk2012/09 Stem bark, roots, twigs and leaves Luo, Maasai, Kuria Otagalo/Ogalo, Olsagararam, Egekobure Livestock respiratory symptoms Infusion of the bark of stem and roots is used as remedy for livestock respiratory symptoms Rhus vulgaris/Anacardiaceae/Fmk2012/10 Roots and fruits Luo, Kuria and Maasai Sangla maduong, Sangla, Ikinyororio, Engarani Livestock weakness Roots and fruit decoction for give strength to livestock Ziziphus abyssinica/Rhamnaceae/Fmk2012/11 Roots, aerial part Luo, Kuria Lang’o Contagious bovine pleuropneumonia Decoction of the roots combined with leaves infusion is used to treat CBPP Gutenbergia cordifolia/Asteraceae/Fmk2012/12 Leaves Luo, Kuria Akech, Ikiburua/Ikiburia Livestock unspecified conditions, Leaves are pounded and administered to livestock, cattle producing hard dung drenched infusion as remedy Lantana trifolia/Verbenaceae/Fmk2012/13 Aerial part and/or the whole plants Luo, Kuria Nyabend winyo, Kehembwe/Kebarisia Treatment for livestock join problems Leaves infusion is used for livestock joint problems Solanum aculeastrum/Solanaceae/Fmk2012/14 Fruits, roots Maasai, Luo and Kuria Osigawai, Ochok, Iri botoboto Livestock respiratory symptoms and contagious bovine pleuropneumonia Juice from the fruits is administered in drops to a sick animal Garcinia buchananii/Clusiaceae/Fmk2012/15 Stem bark, roots Luo Onjak Livestock respiratory symptoms A decoction of the stem bark is used as a remedy for livestock respiratory symptoms Tylosema fassoglensis/Fabaceae/Fmk2012/16 Roots Luo, Kuria Ombasa, Omombara Fever and joint pains in livestock Root infusion is used to treat livestock Mormondica foestida/Curcubitaceae/Fmk2012/17 Aerial parts Luo Omobora Coughs in livestock A concoction is considered as remedy for livestock Fuerstia Africana/Lamiaceae/Fmk2012/18 Aerial part Kuria Ekebunga baare Livestock unspecified conditions Concoction of the aerial part is used as remedy for livestock Toddalia asiática/Rutaceae/Fmk2012/19 Stem bark, roots and leaves Luo, Kuria Nyalwet-kwach, Urunisia Livestock joint pains, coughs, fever Roots and stem bark concoction is used to treat livestock Solanum incanum/Solanacea/Fmk2012/20 Fruits, roots and leaves Maasai, Luo and Kuria Endulelei, Ochok, Iritorotoro Livestock unspecified conditions Roots decoction used as remedy for livestock
The current studies show that the most commonly used plants included; Carissa spinarum, Lantana trifolia and Solanum aculeastrum.
These plants were administered orally in the form of concoctions,
mostly in combination with other plants. The infusion of the roots, stem
bark and fruits, of one of the active plants, Carissa spinarum were administered orally to the livestock, in combination with decoction of other plants such as Albizia coriaria ( Johns et al., 1990 ; Owuor et al., 2012). The juice from the berries of Solanum aculeastrum, which showed interesting antimicrobial activities, was usually instilled into the cattle, goat or sheep's nostrils ( Owuor et al., 2012).
3.2. Antimicrobial susceptibility testing
The organic and aqueous extractions from the plant parts yielded a total of one hundred and fifty two extracts (Supplementary 4).
The antimicrobial activity of 152 extracts from the twenty plants (Supplementary 5)
selected on the basis of their medicinal uses among the Maasai, Luo and
Kuria farmers were evaluated against the growth of five Mmc, five Mmm and one Mcc strains. The results of the antimycoplasmal activity of the five most active plants are represented in Table 6.
Plant names Plant part/ Solvent of extraction Mycoplasma mycoidessusp. mycoides (Mmm)
Mycoplasma mycoidessusp.capri (Mmc)
Mycoplasma capricolumsusp.capricolum (Mcc) Afadé B 237 Gladysdale PG1 V5 Y-Goat 95010 G1313.94 M-18 G1255/94 6443-90 E. divinorum Stem bark/EtOH + + + + + + + + + + + P. thonningii Stem bark/CH2Cl2-MeOH (1:1) + + + + + + + + + + + P. thonningii Stem bark/MeOH + + + + + + + + + + + E. capensis Stem bark/ CH2Cl2-MeOH (1:1) + + + + + − + + + + + E. capensis Stem bark/ MeOH + + + + + + + + + + + S. aculeastrum Leave/ Water − + − + + − − − − − − S. aculeastrum Leave/ EtOH − + + + + − − − − − − S. aculeastrum Leave/MeOH − + − + + − − − − − − S. aculeastrum Leave/CH2Cl2 -MeOH (1:1) − + + + + − − − − − − S. aculeastrum Berries/Water + + + + + − − − − − + S. aculeastrum Berries/EtOH + + + + + + + + + + + S. aculeastrum Berries/MeOH + + + + + + + + + + + S. aculeastrum Berries/CH2Cl2-MeOH (1:1) + + + + + + + + + + + A. coriaria Stem bark/Water − + + + + − − − − − − A. coriaria Stem bark/EtOH + + + + + − − + − − − A. coriaria Stem bark/MeOH + + + + + + + + + + + A. coriaria Stem bark/CH2Cl2-MeOH (1:1) + + + + + + + + + + + Controls Tetracycline + + + + + + + + + + + Positive control − − − − − − − − − − −
The antimycoplasmal test of twenty ethno-medicinal plants used by these communities showed that only five (5) plants namely: Solanum aculeastrum, Albizia coriaria, Ekebergia capensis, Piliostigma thonningii and Euclea divinorum
inhibited the growth of all the strains tested in the current study.
The activities of these extracts differed significantly depending on the
plant part and the solvent used for the extraction process. The aqueous
extracts from the stem of Solanum aculeastrum exhibited the highest antimicrobial activities with MIC values of 0.02 mg/ml at p ≤ 0.05. In general, Mmm strains showed that they were more susceptible to the active extracts from five active plants compared to Mmc and Mcc strains.
Furthermore, it was observed that all organic extracts ca 50% MeOH in CH2Cl2, neat MeOH and EtOH from the berries of Solanum aculeastrum inhibited all the Mmc, Mcc and Mmm strains used while the water extracts from the berries and the stem selectively showed inhibitory effect only on Mmm strains.
Similarly, all organic extracts from the stem bark of Albizia coriaria showed inhibitory effects against the growth of all Mycoplasma strains used in this study while the polar aqueous extracts from the stem bark and leaves inhibited some Mmm strains ( Table 6).
The extract of the stem bark Ekebergia capensis obtained using 50% MeOH in CH2Cl2 and 100% MeOH were active against the growth of almost all the strains of Mycoplasma tested, while those from the stem bark of Piliostigma thonningii obtained using MeOH in CH2Cl2 and 100% MeOH inhibited the growth of all the strains.
It was clear that the EtOH extracts of the active plants except for the stem bark of Euclea divinorum and A. coriaria and from the berries of Solanum aculesatrum were inactive against all Mmm, Mmc, and Mcc
strains used in this study. It is likely that the inactivity of the
EtOH extracts of most plants was attributed to the nature of the target
compounds expected to be polar.
Six plants namely: Acacia xanthophloea, Warbugia ugandensis, Olea europeae, Rhus vulgaris, Solanum incanum and Tylosema fassoglensis
showed moderate antimycoplasmal activity that differed from one strain
to another. The extracts from these plants inhibited almost half of all
the Mmm, Mmc and Mcc strains with the exception of extracts from Tylossema fossoglensis and Acacia xenthophloea, which were active against all Mmm, tested in this study.
The plants that had minimal to no activities including; Gutenbergia cordifolia, Carissa spinarum, Zizyphus abyssinica, Garcinia buchananii, Lantana trifolia, Tithonia diversifolia, Toddalia asiatica, Fuerstia africana and Momordica foetida were excluded from further studies.
3.3. Minimum inhibitory concentration
The
minimum inhibitory concentration (MICs) regarded as the lowest
concentration of the active extract that inhibited the growth of Mycoplasma
strains after 7 days of incubation were determined by preparing serial
dilutions of the initial concentration. In general, lower MIC mean
values were observed with Mmm strains compared to Mmc and Mcc strains. The extracts from the berries and stem bark of Solanum aculeastrum obtained using 50% MeOH-CH2Cl2 and water were the most active with MIC mean values of 0.02 mg/ml. The stem bark extracts from Albizia coriaria and Ekebergia capensis showed activity with the lowest MIC mean value of around 0.13 mg/ml against Mmm strains while that of the extracts of Euclea divinorum was active with MIC mean value of 0.5 mg/ml.
The MIC mean values of active extracts against Mmc strains ranged from 0.13 mg/ml to 0.60 mg/ml while those against Mmm strains ranged from 0.02 to 0.5 mg/ml (Table 7).
Plant name Parts used Solvent of extraction Mean of MIC against Mmm strains (mg/ml±SEM) Mean of MIC against Mmc strains (mg/ml±SEM) MIC against Mcc strains (mg/ml±SEM) A. coriaria Stem bark CH2Cl2/MeOH (1:1) 0.32±0.110 0.13±0.092 0.05 A. coriaria Stem bark MeOH 0.13±0.092 0.41±0.090 0.005 A. coriaria Stem bark EtOH 0.22±0.114 0.23±0.110 0.05 S. aculeastrum Berries CH2Cl2/MeOH (1:1) 0.023±0.110 0.23±0.110 0.05 S. aculeastrum Berries MeOH 0.23±0.011 0.14±0.090 0.005 S. aculeastrum Berries EtOH 0.13±0.299 0.23±0.110 – S. aculeastrum Berries Water 0.22±0.114 0.51±0.150 0.5 S. aculeastrum Stem bark Water 0.02±0.011 0.60±0.100 – P. thonningii Stem bark CH2Cl2/MeOH (1:1) 0.5±0.000 0.41±0.090 0.05 P. thonningii Stem bark MeOH 0.5±0.000 0.23±0.110 0.05 E. capensis Stem bark CH2Cl2MeOH (1:1) 0.13±0.092 0.40±0.099 0.5 E. capensis Stem bark MeOH 0.40±0.186 0.23±0.110 0.5 E. divinorum Stem bark EtOH 0.5±0.000 0.41±0.090 0.5 Controls Tetracycline N/A 0.005 0.005 0.005 Media (PPLO) – – – –
4. Discussion
It is interesting to note that all the extracts from the two plants frequently mentioned by farmers including: Carissa spinarum (10/28) and Lantana trifolia (8/28), were not potent against all Mycoplasma strains tested. Furthermore, this contradicts, previous reports that have shown that Lantana trifolia elaborated flavonoids such as umuhengerin (1)
with good antimicrobial activity (Rwangabo et al., 1988). The
inactivities of the extracts of these two plants could probably be
attributed to the fact that traditional medicine practitioners and
farmers rarely use these plants singly but rather in combination with
others. Carissa spinarum, for example, was mostly used in combination with plants like Albizia coriaria. Similarly, extracts of Lantana trifolia were frequently used in combination with those of Piliostigma thonningii.
Most of the plants with interesting in vitro antimycoplasmal activities against all strains tested including: Solanum aculeastrum (berries), Albizia coriaria (stem bark), Ekebergia capensis (stem bark), Piliostigma thonningii (stem bark) and Euclea divinorum (stem bark), have previously been studied for activities against other strains of bacteria such as; Staphylococcus aureus, Escherichia coli, S. typhi ( Al-Fatimi et al., 2007; Munyendo et al., 2011 ; Owuor et al., 2012). However this is the first report of these plants against Mycoplasma.
All organic extracts from the berries of Solanum aculeastrum
were active against all the strains, while the aqueous extracts showed
inhibitory activities against only a few strains. Although farmers were
not using the stem or leaves of this plant, extracts from these plant
parts inhibited selected Mycoplasma strains. Previous investigations by Wanyonyi et al. (2003) showed that extracts from S. aculeastrum were active against E. coli and S. aureus. The ethno-botanical survey by Owuor et al. (2006)
showed that this plant is traditionally used for the management of both
livestock (respiratory symptoms) and human diseases such as gonorrhoea.
In a separate report, Koduru et al. (2007) observed that the extracts from the berries and leaves of S. aculeastrum were active against
selected gram-positive and gram-negative bacteria with the
concentration values ranging between 4.0 and 10.0 mg/ml, much higher
than the initial concentration of 1 mg/ml, in the present study.
Furthermore, this plant was also reported to exhibit antifungal
activities Koduru et al. (2007).
Nevertheless other bioactive alkaloids from this plant could also
impact the observed activity in this study since this plant is known to
be an alkaloid bearing plant.
The
antimicrobial activities observed in this study could be attributed to
the presence of compounds previously isolated from the genus Solanum such as flavonoid (tiriloside, 2), alkaloids (solasodine, 3), steroidal alkaloids (capsimine, 4, solanudine, 5), steroidal alkaloids glycosides (solamargine, 6) ( Murakami et al., 1985; Schakirov and Yunusov, 1990; Wanyonyi et al., 2003 ; Esteves-souza et al., 2003)
.
The organic extracts from Albizia coriaria were active against all the Mycoplasma strains used in this study. The presence of compounds such as saponins; albiziatrioside A and B, 7 & 8, alkaloids; macrocyclic spermine alkaloids, 9 and flavonoids; luteolin, 10, quercetin-3-O-α-l-rhamnopyranoside, 11 (Mar et al., 1991; Abbel-Kadder et al., 2001; Melek et al., 2011) from the genus Albizia could justify the antimycoplasmal activities observed in this study.
Water extracts from the stem bark of Albizia coriaria could not inhibit Mmc nor Mcc and were active only against few Mmm strains. Although farmers do not use the leaves, our study showed that extracts from this plant part inhibited selected Mmm strains. Previous studies by Owuor et al., (2012) and Faisal et al. (2012) reported evidence for antimicrobial activity of extracts from the genus Albizia,
which could possibly also explain the antimycoplasmal activities,
observed in the current study. Moreover, secondary metabolites such as:
saponins, flavonoids and alkaloids previously reported by Mar et al., (1991); Abbel-Kadder et al., (2001); Melek et al., (2011); Faisal et al., (2012) and Singab et al., (2015) on the genus Albizia
are known to have antibacterial, antifungal and anticancer activities.
The outcome of this study is an indication of the necessity of isolating
individual compounds from this plant, which could then be used for the
formulation of antimicrobial agents.
All organic extracts from the stem bark and the leaves of Ekebergia capensis inhibited the growth of almost all the Mmm strains used in this study while Mmc and Mcc
strains were only susceptible to dichloromethane and methanol mixture
or methanol extracts from the stem bark of this plant. Little is known
on the antimicrobial activities of this plant, but Sewram et al., (2000)
reported that compounds isolated from this plant showed uterotonic
activities against both pregnant and non pregnant guinea pig uterine
smooth muscle. However, compounds previously isolated from the genus Ekebergia such as terpenoids; oleanonic acid, 12, ekeberin A, 13, flavonoids; kaempferol-3-O-β-d-glucopyranoside, 14, quercetin-3-O-β-d-glucopyranoside, 15 (Irungu et al., 2014;) could be the reason why these extracts showed good antimycoplasmal activities against all the strains tested
.
The extracts from Piliostigma thonningii (50% MeOH in CH2Cl2
mixture and neat MeOH) inhibited the growth of almost all the strains
although not much is known about the antimicrobial properties of this
plant. Previous reports on preliminary phytochemical screening of
extracts from this plant by Ukwuani et al. (2012)
showed that this plant contains compounds such as tannins, saponins,
terpenoids, glycosides, flavonoids and alkaloids which could be
responsible for the antimycoplasmal activity observed the current study.
For Euclea divinorum, only ethanol extracts inhibited the growth of all the Mmc, Mmm and Mcc strains used in this study. This plant has previously been reported to have antimicrobial properties ( Orwa et al., 2008), which bolsters our findings and its uses among Kenyan farmers.
Previous phytochemical reports showed that phenolic compounds such as; Eucleanal A and B, 17 &18 from Euclea divinorum ( Nishiyama et al., 1996 ; Ng’ang’a et al., 2012) which could be responsible for the observed antibacterial activities.
The extracts from the rest of the plants showed weak activities against some Mycoplasma
strains. The low antimycoplasmal activities by these extracts could be
due to the fact that the active principles were minor constituents in
the extract. Alternatively, the constituent compounds could be acting
antagonistically therefore reducing the resultant activities of these
extracts.
Surprisingly, a plant such as Momordica foetida (whole plant) mentioned by farmers, was inactive against all Mmc and Mmm strains contrary to previous reports showing that related species such as; Momordica balsamina exhibited antimicrobial properties ( Otimenyin et al., 2008). This could be due to the unique nature of Mycoplasma strains which unlike other bacteria strains lack a cell wall and have a small genome.
From the MIC values observed in this study, it is clear that extracts from the berries and stem bark of S. aculeastrum showed good activity suggesting that they could be having bioactive compounds.
5. Conclusions and recommendations
From the in vitro
screening of a total of 152 extracts from 20 medicinal plants selected
by Maasai, Kuria and Luo ethnic groups in Kenya, those of five plants,
including: S. aculeastrum (berries), A. coriaria (stem bark), E. capensis (stem bark), P. thonningii (stem bark) and E. divinorum (stem bark) were active against all the Mmc, Mcc and Mmm
strains tested in this study. The outcome of the present study should
be shared with the smallholder farmer especially those who undertook the
interview for effective management of livestock mycoplasmal infections.
Further, investigations of the active extracts should be carried out to
characterize the phytochemistry that would be responsible for their
potencies towards drug development. In addition, the safety profiles of
these extracts should be determined before their formulations into
phytomedicines against mycoplasmal infections.
Author contribution
FK-K, GO, JNG, JM, ES and JN conceived and designed the experiments.
FK-K performed the experiments.
FK-K, ES and JN analysed the data.
FK-K, JN and JM contributed reagents/materials/analysis tools.
FK-K, LKO, JM, ES, NM and JN wrote the paper.
Acknowledgements
Francisca Kama-Kama has been supported by DAAD (Grant No A/12/94884).
The laboratory aspects of this project was partly supported by the
BecA-ILRI Hub through the Africa Biosciences Challenge Fund (ABCF)
program. The ABCF Program is funded by the Australian Department for Foreign Affairs and Trade
(DFAT) (Grant No: BS01 NBO SID004 SID004D1 ABC105) through the
BecA-CSIRO partnership; the Syngenta Foundation for Sustainable
Agriculture (SFSA); the Bill & Melinda Gates Foundation (BMGF); the
UK Department for International Development (DFID) and; the Swedish
International Development Cooperation Agency (Sida)”. We gratefully
acknowledge support from German Federal Ministry for Economic Cooperation and Development (project No 09.7860.1-001.00, contract No: 81121408) and the International Science Program, Uppsala University, Sweden (ISP)-KEN-02
Project. We thank Prof. Abiy Yenesew and Joyce Njuguna for their
support. We thank Frederick Otieno for his help in preparing the GPS map
and Jores Joerg for providing all the Mycoplasma strains used in this study. We thank our consultant Mr. Patrick C. Mutiso for his help in identification of plants.
Appendix A. Supplementary material
References
- Al-Fatimi et al., 2007
- Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen
- J. Ethnopharmacol., 111 (3) (2007), pp. 657–666 http://dx.doi.org/10.1016/j.jep.2007.01.018
- | | |
- Arjoon et al., 2012
- In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri
- BMC Complement. Altern. Med., 12 (2012), p. 169 http://dx.doi.org/10.1186/1472-6882-12-169
- Cao et al., 2010
- High prevalence of macrolide resistance in mycoplasma pneumoniae isolates from adult and adolescent patients with respiratory tract infection in China
- Clin. Infect. Dis., 51 (2010), pp. 189–194 http://dx.doi.org/10.1086/653535
- | |
- Cox PA1, 1994
- The ethnobotanical approach to drug discovery
- Sci. Am., 270 (1994), pp. 82–87
- Esteves-souza et al., 2003
- Cytotoxic activities against ehrlich carcinoma and human K562 leukaemia of alkaloids and flavonoid from two solanum species
- J. Braz. Chem. Soc., 13 (6) (2003), pp. 838–842
- Faisal et al., 2012
- Review of Albiziz lebbeck a potent herbal drug
- Int. Res. J. Pharm., 3 (1) (2012), pp. 63–68
- |
- Fischer et al., 2012
- The origin of the 'Mycoplasma mycoides cluster' coincides with domestication of ruminants
- PLoS One, 7 (4) (2012), p. e36150
- Githiori and Höglund, 2005
- Ethnoveterinary plant preparations as livestock dewormers: practices, popular beliefs, pitfalls and prospects for the future
- Anim. Health Res. Rev., 6 (1) (2005), pp. 91–103
- | |
- Gruson et al., 2005
- In Vitro Development of Resistance to Six and Four Fluoroquinolones in Mycoplasma pneumoniae and Mycoplasma hominis, Respectively
- Antimicrob. Agents Chemother., 49 (3) (2005), pp. 1190–1193 http://dx.doi.org/10.1128/AAC.49.3.1190
- | |
- Irungu et al., 2014
- Constituents of the roots and leaves of ekebergia capensis and their potential antiplasmodial and cytotoxic activities
- Molecules, 19 (9) (2014), pp. 14235–14246 http://dx.doi.org/10.3390/molecules190914235
- | |
- Johns et al., 1990
- Herbal remedes of the Luo of Siaya district Kenya: Establishing quantittive criteria for consensus
- Econ. Bot., 44 (3) (1990), pp. 369–381
- | |
- Jores et al., 2013
- Development of an improved vaccine for contagious bovine pleuropneumonia: an African perspective on challenges and proposed actions
- Vet. Res., 44 (1) (2013), pp. 1–5 http://dx.doi.org/10.1186/1297-9716-44-122
- |
- Koduru et al., 2007
- Antioxidant Activity of two Steroid Alkaloids extracted from Solanum aculeastrum
- J. Pharmacol. Toxicol. (2007)
- Mar et al., 1991
- Biological activity of novel macrocyclic alkaloids (budmunchiamines) from Albizia amara detected on the basis of interaction with DNA
- J. Nat. Prod., 54 (6) (1991), pp. 1531–1542
- | |
- Martin, 2000
- Ethnobotany: A Methods Manual
- Earthscan, London; Sterling, VA (2000)
- Melek et al., 2011
- Flavonoids from Albizia procera Egytian
- J. Pure Appl. Sci. (2011), pp. 79–82
- |
- Morozumi et al., 2008
- Increased Macrolide Resistance of Mycoplasma pneumoniae in Pediatric Patients with Community-Acquired Pneumonia
- Antimicrob. Agents Chemother., 52 (1) (2008), pp. 348–350 http://dx.doi.org/10.1128/AAC.00779-07
- | |
- Munyendo et al., 2011
- Bactreiostatic and Bactericidal Activities of Aspilia mossambicensis, Ocinum gratissimum and Toddalia asiatica Extracts on Selected Pathogenic bacteria
- Res. J. Med. Plant, 5 (6) (2011), pp. 717–727
- |
- Murakami et al., 1985
- Pharmaceutical Society of Japan NII-Electronic Library Service
- Pharm. Soc. Jpn., 33 (1) (1985), pp. 67–73
- |
- Mwirigi et al., 2016
- Veterinary Immunology and Immunopathology Experimental evaluation of inactivated and live attenuated vaccines against Mycoplasma mycoides subsp. mycoides
- Vet. Immunol. Immunopathol., 169 (2016), pp. 63–67 http://dx.doi.org/10.1016/j.vetimm.2015.12.006
- | | |
- Ng’ang’a et al., 2012
- Eucleanal A and B: Two new napthalene derivatives from Euclea divinorum
- Chin. Chem. Lett., 23 (5) (2012), pp. 576–578 http://dx.doi.org/10.1016/j.cclet.2012.01.024
- | | |
- Nishiyama et al., 1996
- Acyclic triterpenoids from Ekebergia capensis
- Phytochemistry, 42 (3) (1996), pp. 803–807 http://dx.doi.org/10.1016/0031-9422(96)00004-0
- | | |
- Njoroge et al., 2010
- Utilisation of priority traditional medicinal plants and local people's knowledge on their conservation status in arid lands of Kenya (Mwingi District)
- J. Ethnobiol. Ethnomed., 6 (2010), p. 22 http://dx.doi.org/10.1186/1746-4269-6-22
- | |
- Ole-Miaron, 2003
- The Maasai ethnodiagnostic skill of livestock diseases: a lead to traditional bioprospecting
- J. Ethnopharmacol., 89 (1) (2003), pp. 79–83
- | | |
- Orwa et al., 2008
- The use of Toddalia asiatica (L) Lam. (Rutaceae) in traditional medicine practice in East Africa
- J. Ethnopharmacol., 115 (2) (2008), pp. 257–262 http://dx.doi.org/10.1016/j.jep.2007.09.024
- | | |
- Otimenyin et al., 2008
- Antimicrobial and Hypoglycemic effects of Momordica balsamina.Linn
- J. Nat. Prod., 1 (2008), pp. 3–9
- |
- Owuor et al., 2006
- Some Medicinal Trees and Shrubs of Eastern Africa For Sustainable Utilisation and Commercialisation
- (2006)
- Owuor et al., 2012
- In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants
- J. Ethnopharmacol., 144 (3) (2012), pp. 779–781 http://dx.doi.org/10.1016/j.jep.2012.09.045
- | | |
- Planta, 2007
- The Role of Poverty in Antimicrobial Resistance
- J. Am. Foard Fam. Med., 20 (6) (2007) http://dx.doi.org/10.3122/jabfm.2007.06.070019
- Schakirov and Yunusov, 1990
- Steroidal alkaloids
- Nat. Prod. Rep., 7 (1990), p. 139
- Singab et al., 2015
- Saponins from Genus Albizia: Phytochemical and Biological Review
- Med. Aromat. Plants (2015), pp. 1–7 http://dx.doi.org/10.4172/2167-0412.S3-001
- |
- Stemke and Robertson, 1982
- Comparison of Two Methods For Enumeration of Mycoplasmas
- J. Clin. Microbiol., 16 (5) (1982), pp. 959–961
- |
- Tambi et al., 2006
- An estimation of the economic impact of contagious bovine pleuropneumonia in Africa
- Rev. Sci. Et. Tech. (Int. Off. Epizoot.), 25 (3) (2006), pp. 999–1011 (Retrieved from) http://www.ncbi.nlm.nih.gov/pubmed/17361766
- | |
- Tsigemelak et al., 2016
- The utilizattion of medicinal plants by the Masaai community in arid lands of Kajado county, Kenya
- Int. J. Plant, Anim. Environ. Sci., 6 (3) (2016), pp. 151–160 http://dx.doi.org/10.21276/Ijpaes
- |
- Ukwuani et al., 2012
- Acute Oral Toxicity and Antiulcer Activity of Piliostigma thonningii Leaf Fraction in Albino rats
- 2 (2012), pp. 41–45
- |
- Wanyonyi et al., 2003
- A novel glycosidic steroidal alkaloid from Solanum aculeastrum
- Bull. Chem. Soc. Ethiop., 17 (1) (2003), pp. 61–66 http://dx.doi.org/10.4314/bcse.v17i1.61733
- |
- Xin et al., 2009
- molecular mechanisms of macrolide resistance in clinical isolates of mycoplasma pneumoniae from china
- Antimicrob. Agents Chemother., 53 (5) (2009), pp. 2158–2159 http://dx.doi.org/10.1128/AAC.01563-08
- | |
© 2016 The Authors. Published by Elsevier Ireland Ltd.