twitter

Monday, 5 June 2017

Ancient peat and apple extracts supplementation may improve strength and power adaptations in resistance trained men


  • Jordan M. JoyEmail author,
  • Roxanne M. Vogel,
  • Jordan R. Moon,
  • Paul H. Falcone,
  • Matt M. Mosman,
  • Zbigniew Pietrzkowski,
  • Tania Reyes and
  • Michael P. Kim
BMC Complementary and Alternative MedicineBMC series – open, inclusive and trusted201616:224
DOI: 10.1186/s12906-016-1222-x
Received: 23 May 2016
Accepted: 14 July 2016
Published: 18 July 2016

Abstract

Background

Increased cellular ATP levels have the potential to enhance athletic performance. A proprietary blend of ancient peat and apple extracts has been supposed to increase ATP production. Therefore, the purpose of this investigation was to determine the effects of this supplement on athletic performance when used during 12 weeks of supervised, periodized resistance training.

Methods

Twenty-five healthy, resistance-trained, male subjects completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extract (TRT) or an equal-volume, visually-identical placebo (PLA) daily. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2 week overreach and a 2 week taper phase. Strength was determined using 1-repetition-maximum (1RM) testing in the barbell back squat, bench press (BP), and deadlift exercises. Peak power and peak velocity were determined during BP at 30 % 1RM and vertical jump tests as well as a 30s Wingate test, which also provided relative power (watt:mass)

Results

A group x time interaction was present for squat 1RM, deadlift 1RM, and vertical jump peak power and peak velocity. Squat and deadlift 1RM increased in TRT versus PLA from pre to post. Vertical jump peak velocity increased in TRT versus PLA from pre to week 10 as did vertical jump peak power, which also increased from pre to post. Wingate peak power and watt:mass tended to favor TRT.

Conclusions

Supplementing with ancient peat and apple extract while participating in periodized resistance training may enhance performance adaptations.

Trial Registration

ClinicalTrials.gov registration ID: NCT02819219, retrospectively registered on 6/29/2016

Keywords

Ergogenic aid Mitochondria Performance ATP Sport nutrition

Background

Adenosine-5’-triphosphate (ATP) and ATP metabolites are involved in numerous biological processes including cardiac function, neurotransmission, blood flow, and muscle contraction [12], and it has been suggested that increased ATP levels correlate with improved health and performance [345]. Direct supplementation with exogenous ATP has demonstrated divergent results in terms of increasing ATP when measured in whole blood [367]. Therefore, supplementation strategies for increasing endogenous ATP levels may be desirable. Previously, oral supplementation with a proprietary blend of ancient peat and apple extracts have been demonstrated to increase intracellular ATP levels in whole blood and intramuscular levels of ATP in resting subjects, suggesting increased activity of bodily processes that lead to endogenous ATP production [89].
Previous research has found oral supplementation with a proprietary blend of ancient peat and apple extracts to increase ATP concentrations in whole blood of resting subjects as well as intramuscular concentrations in one volunteer [9]. Preliminary reports from this laboratory suggest this occurs without an increase in reactive oxygen species, which may be associated with increased ATP production [10]. In fact, ancient peat and apple extracts may actually decrease reactive oxygen species [8], possibly blunting a potential increase caused by resistance training [11].
Another nutritional supplement that has been well documented as an ergogenic aid via modulation of the phosphagen energy system is creatine monohydrate. While it would be bold to suspect another supplement to match the myriad of athletic performance benefits of creatine at present, it stands to reason that other ATP-enhancing supplements would be the premier candidates. In brief, creatine has demonstrated efficacy for improving maximal strength, peak power, and fatigue resistance [1213]. The primary mechanism for creatine’s ergogenic effects is via rephosphorylation of adenosine diphosphate to ATP via creatine phosphate [1415]. Thus, the potential exists for ATP increased through alternative means to also increase strength, power, and exercise tolerance.
Despite these observations, supplementation for indirect ATP enhancement is yet to be evaluated for potential to augment performance in response to resistance training. However, the existing data on ancient peat and apple extracts for increasing both whole blood and muscle ATP levels [89] and muscle mass [16] support the plausibility for chronic supplementation yielding positive augmentation of performance following resistance training. Therefore, the purpose of this study is to determine the effects of a proprietary blend of ancient peat and apple extracts on athletic performance. It was hypothesized that supplementation would improve strength and power over the duration of the training program as well as blunt a decrement in performance due to overreaching.

Methods

Participants

Twenty-five healthy, resistance-trained, male subjects (28 ± 5y; 176.0 ± 6.5 cm; 83.2 ± 12.1 kg) completed this double-blind study. 33 subjects were recruited, and 3 subjects did not complete the study due to scheduling conflicts, 3 were not compliant with protocols, and 2 sustained injuries during the study unrelated to training or supplementation. All subjects were prohibited from using any supplements not provided in the study except for a multivitamin or protein powder food substitute, which they were not permitted to use within 2 h before or after resistance training sessions. Each subject was required to be capable of lifting 1.5x their bodyweight in the squat and deadlift and 1x bodyweight in the bench press. At baseline, the placebo (PLA) group was able to squat 1.71 ± 0.21, bench press 1.45 ± 0.19, and deadlift 2.17 ± 0.25 times their bodyweight, and the treatment (TRT) group was able to squat 1.66 ± 0.24, bench press 1.31 ± 0.20, and deadlift 1.93 ± 0.27 times their bodyweight. Approval for research with human subjects was obtained from the MusclePharm Sports Science Institute IRB (accredited by the United States Department of Health and Human Services), and protocols conformed to the standards set by the latest revision of the Declaration of Helsinki. No members of the IRB were involved in study conception, design, data collection, data analysis, or data interpretation. Subjects provided their written informed consent prior to participation in the study.