- Eshetie Melese BirruEmail author,
- Assefa Belay Asrie,
- Getnet Mequanint Adinew and
- Asegedech Tsegaw
BMC Complementary and Alternative MedicineBMC series – open, inclusive and trusted201616:272
DOI: 10.1186/s12906-016-1252-4
© The Author(s). 2016
Received: 8 October 2015
Accepted: 29 July 2016
Published: 5 August 2016
Abstract
Background
Till now many of medicinal
plants having claimed therapeutic value traditionally are waiting
scientific verification of their efficacy and safety. Accordingly this
study is conducted to evaluate the antidiarrheal activity of
hydromethanolic root extract of Indigofera spicata
Forssk. in castor oil induced diarrhea model, misoprostol induced
secretion model and its antimotility activity using charcoal as a
marker.
Methods
In all the three models the
animals were randomly allocated into five groups of six animals each and
then group I mice were received 1 ml/100 g normal saline, group II were
treated with standard drug as a positive control whereas group III, IV
and V were treated with 100, 200 and 400 mg/kg extract doses,
respectively. Statistical significance of differences in the mean of
number of defecations, fluid content of faces, intestinal fluid
accumulation ratio, intestinal fluid weight and distance travelled by
charcoal between groups was analyzed by SPSS version-21 using one way
ANOVA followed by Tukey’s post hoc multiple comparison.
Result
The hydromethanolic crude extract of Indigofera spicata at 200 and 400 mg/kg mg/kg doses showed statistically significant (p < 0.05)
inhibition of the frequency of defecation and weight difference of the
fluid content of the faces compared to the negative controls. For those
doses the percentage inhibition of diarrheal feces was 43.62 and
53.51 %, respectively. The antisecretary activity of the extract in
terms of fluid accumulation ratio was not found significant but in terms
of intestinal fluid weight, all the extract doses revealed significant (p < 0.05)
inhibition. Unlike the standard drug, the antimotility activity of the
extract was not found statistically significant compared to the negative
control.
Conclusion
Root of Indigofera spicata
Forssk. has shown promising antidiarrheal activity which validates its
traditional use. Further studies are needed and possibly the plant may
serve as a potential source of new agent in the therapeutic
armamentarium of diarrhea.
Keywords
Antidiarrheal Indigofera spicata Castor oil EthnopharmacologyBackground
Diarrhea
is generally defined as the passage of abnormally liquid or unformed
stools associated with increased frequency of defecation, and abdominal
pain [1].
Despite reductions in morbidity and mortality worldwide, diarrhea still
accounts for more than 2 million deaths annually and is associated with
impaired physical and cognitive development in resource-limited
countries [2, 3].
This is more significant in case of infants and children for instance
in developing countries, diarrhoeal disease accounts for an estimated
17.5–21 % of all deaths in children under the age of 5 years, equivalent
to 1.5 million deaths per year. Of all child deaths from diarrhoea,
78 % occur in the African and South-East Asian regions, creating a
tremendous economic strain on healthcare costs [4].
The
existence of unique geographic, economic, political, sociocultural, and
personal factors in sub-Saharan region interact to create distinctive
continuing challenges to diarrhea prevention and control. Consequently,
approximately 40 % of childhood deaths from diarrhea worldwide will
occur in Sub-Saharan Africa by the year 2000, although only 19 % of the
world’s population under the age of 5 years will live in this region.
This continuing epidemic deserves sustained programmatic and research
attention as international public health moves on to confront newer
issues in infectious disease and the changing burdens of disease
associated with the demographic transition [5, 6].
Medicinal
plants are usually preferred to treat gastrointestinal disorders, for
example, constipation and diarrhea, because they contain multiple
constituents with effect-enhancing and/or side effect-neutralizing
potential [7]
and, hence are considered relatively safe in prolonged use. There has
been increased global interest in traditional medicine and there are
efforts underway to monitor and regulate herbal drugs and traditional
medicine [8].
Due to reliance of the society of resource limited areas still on
herbal medicine for their health care needs WHO recommended the
integrated use of folk and modern medicine for controlling of health
problems [9].
Like
other developing countries, people in Ethiopia strongly rely on
therapeutic benefits of traditional medicine. Accordingly,
ethnobotanical survey studies reported that there are a number of plants
which do have claimed antidiarheal role but scientific therapeutic and
safety evaluations on some of these herbs such as Indigofera spicata Forssk. have not been reported [10, 11, 12].
Indigofera
species posses multiple uses ranging from several economical and
ecological roles, feed for livestock, ornamental, medicinal plant
recipes as well as dye for commercial purpose. In this genus and family
Fabaceae, the flowering herb Indigofera spicata Forssk. is traditionally useful for the treatment of meningitis, diarrhea, stomachache, diabetes and other health problems [10, 11, 12, 13, 14, 15, 16]. Apart from a number of ethnomedicine survey reports of this plant therapeutic usefulness for diarrhea and stomachache [10, 11, 12, 15], pharmacologically Indigofera spicata has reported in vitro antioxidant, cytotoxic and antibacterial [17, 18, 19] and in vivo antidiabetic activity [16].
It is stated that diarrhea impairs intestinal antioxidant defense
system which will make it complicated and induce other oxidative stress
disorders and therefore antioxidants may take up important application
in the management of diarrhea [20, 21, 22]. Even though there is no detail study on the phytoconstituents of this plant previous works [16, 17]
reported that this plant contains alkaloids, flavnoids, tannins,
steroids and others most of which do have known antidiarrheal activity [23, 24]. Thus, considering all these the present study is aimed at pharmacologic verification of the antidiahreal activity of Indigofera spicata
Forssk. using animal model that may give us a clue to enlighten on its
efficacy for diarrhea and the essence of further investigations.
Methods
Plant material
The roots of Indigofera spicata
(IS) were collected from Shawra and its surounding area, South West
Gondar province, North West Ethiopia in December, 2014. Taxonomic
identification was done by a botanist (Mr. Abiyu Enyew, Plant biology
and biodiversity (PHD candidate), Addis Abeba Univesity) and a voucher
specimen (EM001) is already deposited in the Department of Biology,
National Herbarium, Addis Ababa University.
Experimental animals
Healthy
male Swiss albino mice, weighing between 22–32 g and 6 to 8 weeks old,
were obtained from animal house of Department of Pharmacology,
University of Gondar. They were housed in plastic cages with softwood
shavings and chips as beddings. They were maintained under standard
condition of relative humidity, temperature and 12 h light /12 h dark
cycle and given food and water ad labtium. All mice were acclimatized to the working environment 1 week before the beginning of pharmacologic activities evaluation [25, 26].
Extraction procedure
The fresh roots of Indigofera spicata
Forssk. were thoroughly washed with distilled water to remove dirt and
soil, and dried under shade and optimal ventilation for 2 weeks. The
dried roots were further chopped into small pieces and reduced to powder
using electronic miller. The coarsely powdered roots were subjected to
maceration extraction procedure using 80 % methanol (for 72 h at room
temperature) as a menstruum and this was done three times. The
respective extract was filtered using Whatman No-1 filter paper and the
solvent was evaporated in an oven under reduced pressure at 40 °C.
Finally the dried extract was stored at 4 °C in refrigerator.
Prelimnary phytochemical screening
Acute toxicity
As per the OECD guideline, acute oral toxicity was determined by using the limit dose of 2000 mg/kg body weight of the mice [26].
Animal grouping and dosing
In all models the mice were randomly grouped (n = 6) and the substances administered were as follows:
- Group I:received 1 ml/100 mg normal saline (NS).
- Group II:treated with standard drug, 3 mg/kg lopiramide (3 mg/kg Lop) in both castor oil induced antidiahreal test and misoprostol induced antisecretory test and atropine sulfate 0.1ug/g IP for gastrointestinal motility test.
- Group III:treated with 100 mg/kg extract (100 mg/kg ISP).
- Group IV:treated with 200 mg/kg extract (200 mg/kg ISP).
- Group V:treated with 400 mg/kg extract (400 mg/kg ISP).
The
test doses of the extract were selected based on the acute toxicity
study result. Volume to be administered was also determined based on
OECD guideline which states 1 ml/100 g of body weight of the animal [26]. As people traditionally use the preparations of the plant extract via oral route using water as a vehicle [9, 10] the study was conducted using oral route of administration except the intraperitoneal injection of atropine, standard drug.
Antidiarrheal activity evaluation of 80 % methanolic root extract of I. spicata
In
doing this, three antidiarrheal activity evaluation models were used.
The first was the castor oil induced diarrheal model which is helpful to
evaluate the overall possible antidiarrheal activity of the plant
material. And this was followed by the attempt of investigating the
antidiarrheal mechanism of action of the plant extract i.e. either by
inhibition of intestinal transit and/or antisecretary activity.
Castor oil induced model
The assimilation of methods described by Shoba [29] and Franca [30]
with modifications were followed for this study. Only animals which
were found diarrheic when they have taken 0.5 ml castor oil in the
initial screening test were included in this experiment. Mice fasted for
24 h were randomly allocated to five groups of six animals each. For
the induction of diarrhea 0.5 ml castor oil was given for each mouse
30 min before treatment. Each animal was then placed in individual cage,
the floor of which was lined with transparent paper and every hour the
floor lining was changed. Onsets of diarrhea, total number of fecal
outputs within in the 4 h period were recorded. And even total fluid
content of the faces was determined by using the weight difference of
the fresh and dry stool (dried for 24 h at room temperature in a shaded
area). Evacuation classification based on stool consistency was assigned
as follows: normal stool = 1, semi-solid stool = 2 and watery stool = 3
and mean of evacuation index (EI) was calculated for each group [31]. For all the groups the percentage inhibition of diarrhea was also calculated compared to the negative controls.
Gastrointestinal motility test by charcoal meal
The
mice were first fasted for 18 h, but had free access to water. After
the grouping, the respective groups were treated as mentioned above.
After 1 h each animal was loaded with 1 ml of 3 % deactivated charcoal
in normal saline and then waited for 1 h and dissected. The small
intestine (from pylorus to caecum) was removed and its length was
measured. The intestinal charcoal transit was expressed as a percentage
of the distance moved by charcoal to the total length between the
pylorus and the caecum [32]. The known spasmolytic agent, atropine was used as a standard drug for positive control group.
Antisecretary assay
Prostaglandins (PGE2) induce intestinal secretion and this is helpful to evaluate antisecretary activity of different chemical compounds [33, 34].
Thus, in this model the mice were first fasted for 24 h and then
received 20ug/kg misoprostol for the induction of intestinal secretion.
After 1 h each group of mice were treated just like the above castor oil
induced diarrhea model. The animals were then sacrificed after 24 h by
cervical dislocation, laparotimized, and then the pyloric and caecal
ends of the small intestine were tied and removed. For each animal fluid
accumulation ratio (the weight of intestine to the rest of the body
weight of mouse) was determined and the antisecretory activity was
expressed in percentage of inhibition [35].
The weight of the fluid content of the removed intestine was also
determined by subtracting the weight of the intestine before and after
milking of the removed intestine.
Statistical analysis
All
the experimental data are expressed as mean ± Standard error of means.
For data processing and analysis SPSS statistical software Version 21.0
was used. Statistical significance of differences between groups was
assessed by One-way ANOVA followed by post-hoc Tukey’s multiple
Comparison Test. The results were considered significant at p-value less than 0.05.
Ethical clearance
All the experimental animals were handled and used according to the animal care and welfare guidelines [25, 26, 36].
The experimental protocols were requested to and approved by the
Institutional Review Board of the College of Medicine and Health
Sciences, University of Gondar and ethical clearance was obtained from
the research and publication office of the University.
Result
Extract material
The final dried hydromethanolic root extract of Indigofera spicata was brown powder in its color and the yield was 12.53 %.
Phytochemical screening result
The preliminary phytochemical screening test results on the selected secondary plant metabolites are summarized in Table 1.
Table 1
Preliminary phytochemical screening result of crude hydromethanolic root extract of Indigofera spicata
Test
|
Result
|
---|---|
Alkaloids
|
+
|
Tannins
|
+
|
Saponins
|
+
|
glycosides
|
+
|
Flavonoids
|
+
|
Phenolic compounds
|
−
|
Steroidal compounds
|
+
|
Terpenoids
|
+
|
Oral acute toxicity
The
oral acute toxicity test by using the limit dose of 2000 mg/kg body
weight of the mouse found safe because at this dose the animals didn’t
show any observable physical and behavioral changes, confirming that the
LD50 of the extract is greater than 2000 mg/kg.
Andiarrheal acitivity evaluations
Effect of the extract on the castor oil induced diarrhea
Considering
the latency of defecation after castor oil supplementation, only the
400 mg/kg extract dose treated groups demonstrated significant (p < 0.01) delay compared to the negative controls. The onset of defecation in this group was also found significantly (p < 0.05)
different compared to the 100 and 200 mg/kg extract dose treated
groups. Like that of the standard drug, the hydromethanolic crude
extract doses (200 and 400 mg/kg) of root of Indigofera spicata as it is sown in Table 2 showed statistically significant (p < 0.05)
inhibition both in the frequency of defecation and total weight of the
fluid content of the faces compared to the negative controls. The
percentage inhibition of diarrhea by the 100, 200 and 400 mg/kg doses of
the extract was determined 22.49, 43.62 and 53.51 %, respectively. And
this inhibition, especially from the largest dose of extract was
comparable with the inhibitory effect (51.02 %) of lopiramid. Neither
the positive control nor the extract treated groups exhibited
statistically significant difference in the mean evacuation index
compared to the normal saline exposed groups. The mean evacuation index
didn’t show apparent difference among any of the groups.
Table 2
Effect of crude hydromethanolic extract of root of Indigofera spicata on castor oil induced diarrhea in mice
Group
|
Onset of diarrhea (min)
|
Total number of faeces in 4 h (frequency of defecation in 4 h)
|
Mean evacuation index
|
Fluid content of the faces (g)
|
% Inhibition of diarrhea
|
---|---|---|---|---|---|
NS
|
63.33 ± 5.58
|
11.83 ± 1.30
|
2.39 ± 0.09
|
0.78 ± 0.13
|
0.00
|
3 mg/kg Lop
|
99.17 ± 18.14
|
5.83 ± 0.75*
|
2.29 ± 0.15
|
0.36 ± 0.05*
|
51.02
|
100 mg/kg IS
|
71.83 ± 5.67
|
9.17 ± 0.70
|
2.34 ± 0.06
|
0.61 ± 0.11
|
22.49
|
200 mg/kg IS
|
75.33 ± 4.86
|
6.67 ± 1.52*
|
2.17 ± 0.08
|
0.32 ± 0.09*
|
43.62
|
400 mg/kg IS
|
121.17 ± 12.18*ab
|
5.50 ± 0.67*
|
1.96 ± 0.16
|
0.35 ± 0.08*
|
53.51
|
Gastrointestinal motility test
Regarding
spasmolytic activity, all the extract dose treated groups didn’t show
significant difference compared to the negative control and amongst each
other. But the atropine treated group showed statistically significant (p < 0.001)
inhibition of intestinal motility compared to both the negative control
and all the extract treated groups as it is illustrated in Table 3.
Compared to the normal saline exposed group, the percentage inhibition
of intestinal transit from atropine and the largest dose of the extract
(400 mg/kg) were found 68.45 and 11.24 %, respectively.
Table 3
Effect of crude hydromethanolic root extract of root of Indigofera spicata on intestinal motility using charcoal as a marker in mice
Group
|
Total intestinal length (cm)
|
Distance travelled by charcoal (cm)
|
% Intestinal transit of charcoal
|
% Inhibition
|
---|---|---|---|---|
NS
|
55.67 ± 2.16
|
49.67 ± 2.06††
|
89.23 ± 1.26††
|
0.00
|
Atropine
|
57.83 ± 1.14
|
16.33 ± 1.78
|
28.15 ± 2.90
|
68.45
|
100 mg/kg IS
|
54.17 ± 2.15
|
47.67 ± 1.45††
|
88.21 ± 1.62††
|
1.14
|
200 mg/kg IS
|
53.17 ± 1.54
|
45.17 ± 1.89††
|
85.13 ± 3.47††
|
4.59
|
400 mg/kg IS
|
58.33 ± 1.36
|
46.17 ± 1.94††
|
79.20 ± 3.11††
|
11.24
|
Anti-secretary activity
The
antisecretary activity of the extract on misoprostol induced GI
secretion according to the fluid accumulation ratio unlike that of
lopiramide was found statistically insignificant compared to the
negative control. As it is shown in Table 4
the percentage inhibition of intestinal fluid accumulation ratio of the
extract is inversely related to its dose. Nevertheless, the weight of
the intestinal fluid in all the respective extract doses treated groups
was found significantly (p < 0.01) lower than the negative control and this was comparable with the lopiramide treated group.
Table 4
Effect of crude hydromethanolic extract of root of Indigofera spicata on misoprostol induced GI secretion in mice
Group
|
Weight of small intestine (g)
|
Intestinal fluid accumulation ratio
|
Weight of intestinal fluid (g)
|
% Inhibition of intestinal fluid accumulation ratio
|
---|---|---|---|---|
NS
|
1.94 ± 0.52
|
0.109 ± 0.008
|
0.4567 ± 0.11
|
0.00
|
3 mg/kg Lop
|
1.38 ± 0.81
|
0.084 ± 0.004*
|
0.1567 ± 0.01*
|
22.81
|
100 mg/kg IS
|
1.46 ± 0.35
|
0.088 ± 0.004
|
0.1367 ± 0.03*
|
19.21
|
200 mg/kg IS
|
1.45 ± 0.67
|
0.090 ± 0.006
|
0.1383 ± 0.01*
|
17.27
|
400 mg/kg IS
|
1.59 ± 0.41
|
0.096 ± 0.005
|
0.1650 ± 0.03*
|
11.81
|
Discussion
In so many areas in Ethiopia Indigofera spicata is used for the treatment of different health problems including diarrhea [9, 10, 11, 12, 13, 14, 15]
without scientific substantiation of its safety and efficacy. The
safety issue is highly important because this plant has demonstrated
hepatotoxic, abortifacient like and teratogenic effects in animals [37, 38, 39].
Diarrhea
may occur when there is a change in active ion transport by decreased
sodium absorption or increased chloride secretion, change in intestinal
motility, increase in luminal osmolarity; and/or increase in tissue
hydrostatic pressure [40].
From all these mechanisms castor oil via its active compound ricinoleic
acid induces diarrhea by stimulating secretory processes and intestinal
motility secondary to irritation and inflammation [41]. The antidiarrheal agents act by inhibiting one or more of the aforementioned pathophysiologic processes.
Basically in folk medicine root of Indigofera spicata
is used for treatment of diarrhea by using water as a vehicle but here
in this study we used 80 % methanol because hydromethanolic solvents
(especially 80 % methanol) are usually better and more efficient in
extracting the most important bioconstituents of the plant material
which is owing to their expanded polarity range. By virtue of the
cosolubility, many compounds, which are insoluble individually in pure
state in methanol could be extracted quite easily with hydroalcoholic
solvents [42, 43, 44].
Here
in the oral acute toxicity test as per the 2000 mg/kg limit dose of the
OECD guideline was performed to get a clue of the appropriate safe dose
range that could be used in evaluating the antidiarrheal activity of
the extract in different models instead of clarifying all the toxicity
profile of the crude extract. Accordingly in agreement with the previous
oral acute toxicity report of this plant leaves extract [16] and other species of genus Indigofera [45] the LD50 of crude hydromethanolic root extract of Indigofera spicata was found greater than 2000 mg/kg body weight of the animal.
As it shown in Table 2 in the castor oil induced diarrhea the root extract of Indigofera spicata
inhibits frequency of defecation and fluid content of stool more likely
in a dose dependent manner. For instance with in 4 h period of post
castor oil exposure, the frequency of defecation and fluid content of
the stool unlike the 100 mg/kg in those treated with 200 and 400 mg/kg
extract doses there was statistically significant difference (i.e.
inhibition) compared to the normal saline exposed mice. The percentage
inhibition of frequency of defecation from the 400 mg/kg dose of the
extract is 53.51 % which is nearly equivalent with 51.02 % of the
positive control. This antidiarrheal activity of Indigofera spicata in a dose dependent manner makes it more similar with other plant extracts [46].
However, the mean evacuation index didn’t have statistically apparent
difference among all groups which may be due to small sample size and/or
methodologic limitation in designating evacuation based on stool
consistency.
Contrasting
to the antidiarrheal activity of the extract in the castor oil induced
diarrhea model, its activity on intestinal motility was not found
statistically significant (p > 0.05)
and its is confirmed that the plant material don’t have essential
antimotility activity. However, considering the percentage inhibition of
intestinal transit as it is shown in Table 3
as the dose increased by two fold the response also increased by more
than two fold and hence the extract still do have dose dependent
activity in this model.
In
the antisecretary activity evaluation only the intestinal fluid
accumulation ratio of lopiramide treated group was found statistically
significant compared to the negative controls. But in this model the
weight of the intestinal fluid (i.e. determined by taking the weight
difference of the dissected intestine before and after 24 h) like the
positive control in all the extract dose treated groups shown
significant difference (p < 0.05)
compared to the normal saline exposed mice. Furthermore, the percentage
inhibition of intestinal fluid accumulation ratio by 100, 200, and
400 mg/kg doses of the extract was determined to be 19.21, 17.27 and
11.81 % respectively. This tells us the presence of noticeable
relationship between the dose and response of the extract. In this
misoprostol induced intestinal secretion model the antisecretary
activity of the plant demonstrated inversely associated dose–response
relationship. To the contrary as it is shown in the castor oil induced
model the antidiarrheal activity of the larger doses is better than the
lower dose of the extract. This could be explained by difference in
secretion induction mechanism of castor oil and misoprostol that may
affect the antidiarrheal activity of the plant extract. Furthermore,
considering lack of significant antimotility activity and antisecretary
activity using intestinal fluid accumulation ratio as a parameter but
not in terms of weight of intestinal fluid there may be a possibility of
the plant extract to have antidiarrheal activities via adsorbent like
mechanism of action. In conclusion, the antidiarrheal mechanism of
action of the extract need to be investigated further since the overall
finding of this study never address the definitive mechanism.
Regarding the preliminary phytochemical screening in agreement with the previous report on its leaves extract [16] and related species [45] in the crude hydromethanolic root extract of Indigofera spicata
the test was found positive for alkaloids, flavonoids, tannins,
glycosides, saponnins and some other secondary plant metabolites as it
is depicted in Table 1. And these secondary plant metabolites have known antidiarrheal activity independently or synergistically [23].
Among
plant phytochemicals it is reported that tannins reduce diarrhea by
reducing intestinal secretion mediated by the denaturation of secretary
proteins and inhibiting the motility of intestine via altering the
intracellular Ca+2 level [24].
Likewise, flavnoids are also known intestinal motility and water and
electrolyte secretion inhibitors and even they do have antioxidant
activity which may have a role in suppressing the catalytic activity of
different enzymes including enzymes for the synthesis of prostaglandins [22, 47]. Parallel to this fact it is reported that Indigofera spicata do have antioxidant and cytotoxic activity [17, 18]
that may have a role in its antidiarrheal mechanism of action.
Furthermore, steroids may also enhance the absorption of
hydroelectrolytes across the intestinal lumen [23, 48]. Thus the demonstrated biologic antidiarreal activity of hydromethanolic crude root extract of Indigofera spicata might be due to the presence of the aforementioned secondary plant metabolites.
Conclusion
In conclusion this study verified that other than being safe up to a dose of 2000 mg/kg, hydromethanolic crude root extract of Indigofera spicata
Forssk. has antidiarrrheal activity. Accordingly, the study validates
traditional use of the plant for diarrhea and may guide us to use it as a
potential source of new agent in the therapeutic armamentarium of
diarrhea.
Declarations
Acknowledgement
First
we all authors are so thankful for University of Gondar for funding of
this study. Next our gratitude will goes to Mr. Zemene Demelash and
Miss. Banchamlak Demamu for their unreserved technical support in all
the research activities.
Funding
After preparing the proposal
fund was requested to and obtained from University of Gondar. Then after
the authors accomplished all the study tasks.
Availability of data and material
The descriptive result of misoprostol induced secretion model.
Authors’ contributions
All authors were involved in
the design of the study and preparation of the manuscript to be
submitted. EM conducted the actual study, the statistical analysis,
write up and manuscript preparation. All authors read and approved the
submitted version of the manuscript and they are accountable for all
aspects of the work in ensuring that questions related to the accuracy
or integrity of any part of the work are appropriately investigated and
resolved.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Ethical approval and consent to participate
The experimental protocols
using laboratory animals were requested to and approved by the
Institutional Review Board, University of Gondar.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
References
- Guerrant RL, Van Gilder T, Steiner TS, et al. Practice guidelines for the management of infectious diarrhea. Clin Infect Dis. 2001;32:331–51.View ArticlePubMedGoogle Scholar
- Thielman NM, Guerrant RL. Acute infectious diarrhea. N Engl J Med. 2004;350:38–47.View ArticlePubMedGoogle Scholar
- Mehmooda MH, Siddiqia HS, Gilani AH. The antidiarrheal and spasmolytic activities of Phyllanthus emblica are mediated through dual blockade of muscarinic receptors and Ca2+ channels. J Ethnopharmacol. 2011;133:856–65.View ArticleGoogle Scholar
- Boschi-Pinto C, Velebit L, Shibuya K. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ. 2008;86:710–7.View ArticlePubMedPubMed CentralGoogle Scholar
- Hamer DH, Simon J, Thea D, Keusch GT. Childhood diarrhea in Sub-Saharan Africa. Child Health Research Project Special Report. 1998.Google Scholar
- UNICEF. Pneumonia and diarrhea. Tackling the deadliest diseases for the world’s poorest children. New York, USA. 2012
- Gilani AH, Rahman A. Trends in ethnopharmacology. J Ethnopharmacol. 2005;100(1-2):43–9.View ArticlePubMedGoogle Scholar
- Azaizeh H, Saad B, Cooper E, Said O. Traditional Arabic and Islamic medicine, a re-emerging health aid. J Evid Based Complementary Altern Med. 2010;7(4):419–24.View ArticleGoogle Scholar
- Syder JD, Merson MH. The magnitude of the global problems of acute diarrheal disease: a review of active surveillance data. Bulletin of the WHO. 1982;60:605–13.Google Scholar
- Kidane B, van Andel T, van der Maesen LJG, Asfaw Z. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia. J Ethnobiol Ethnomed. 2014;10:46.View ArticlePubMedPubMed CentralGoogle Scholar
- Giday M, Asfaw Z, Woldu Z. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. J Ethnopharmacol. 2009;124:513–21.View ArticlePubMedGoogle Scholar
- Teklehaymanot Tand Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. J Ethnobiol Ethnomed. 2007;3:12.View ArticleGoogle Scholar
- Giday M, Asfaw Z, Woldu Z, Teklehymanot T. Medicinal plant knowledge of the Bench ethnic group of Ethiopia: an ethnobotanical investigation. J Ethnobiol Ethnomed. 2009;5:34–41.View ArticlePubMedPubMed CentralGoogle Scholar
- Megersa M, Asfaw Z, Kelbessa E, Beyene A, Woldeab B. An ethnobotanical study of medicinal plants in Wayu Tuka District, East Welega Zone of Oromia Regional State, West Ethiopia. J Ethnobiol Ethnomed. 2013;9:68–72.View ArticlePubMedPubMed CentralGoogle Scholar
- Giday M. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. CBM:s Skriftserie 3:81–99. Uppsala 2001
- Birru EM, Abdelwuhab M, Shewamene Z. Effect of hydroalcoholic leaves extract of Indigofera spicata Forssk. on blood glucose level of normal, glucose loaded and diabetic rodents. BMC Complement Altern Med. 2015;15:321.PubMedPubMed CentralGoogle Scholar
- Pérez LB, Li J, Lantvit DD, Pan L, Ninh TN, Chai H, et al. Bioactive constituents of Indigofera spicata. J Nat Prod. 2013;76:1498–504.View ArticlePubMed CentralGoogle Scholar
- Pérez LB, Still PC, Naman CB, Ren Y, Pan L, Chai H, et al. Investigation of Vietnamese plants for potential anticancer agents. Phytochem Rev. 2014;13:727–39.View ArticlePubMedPubMed CentralGoogle Scholar
- Dilebo J. Antibacterial activities of Microglossa pyrifolia (Lamk.)Kuntze, Leucas deflexa Hook. and Indigofera spicata Forssk. IJPSR. 2015;6(5):865–8.Google Scholar
- Nieto N, Lopez-pedrosa TM, Mesa MD, Torres MI, Fernandez MI, Rios A, et al. Chronic diarrhea impairs intestinal antioxidant defense system in rats at weaning. Digestive Disease and Sciences. 2000;45(10):124.View ArticleGoogle Scholar
- Han X, Pang Y, Liu S, Tan Z, Tang S, Zhou C, et al. Antidiarrheal and antioxidant activities of Honokiol extract from magnolia officinalis cortex in mice. Trop J Pharm Res. 2014;13(10):1643.View ArticleGoogle Scholar
- Mora A, Paya M, Rios JL, Alcaraz MJ. Structure activity relationships of polymethoxy flavones and other flavonoids as inhibitors of nonenzymic lipid peroxiation. Biochem Pharmacol. 1990;36:317–22.View ArticleGoogle Scholar
- Longanga Otshudi A, Vercruysse A, Foriers A. Contribution to the ethnobotanical, phytochemical and pharmacological studies of traditionally used medicinal plant in the treatment of dysentery and diarrhea in Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol. 2000;71(3):411–23.View ArticlePubMedGoogle Scholar
- Belemtougri RG, Constantin B, Cognard C, Raymond G, Sawadogo L. Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture. J Zhejiang Univ Sci B. 2006;7(1):56–63.View ArticlePubMedGoogle Scholar
- Institute for Laboratory Animal Research (ILAR). Guide for the care and use of laboratory animals. 8th ed. Washington DC: National Academic Press; 2011.Google Scholar
- OECD: Guidelines for the testing of chemicals; Acute oral toxicity: up and down procedures. OECD Publishing; 2008. http://www.oecdbookshop.org, No 425. Adopted December 2008. No 425. Accessed 28 June 2015.
- Trease GE, Evans WC. A textbook of pharmacognosy. 13th ed. London: Bailliere Tindall; 1989. p. 176–80.Google Scholar
- Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia. 2011;1(1):98–106.Google Scholar
- Shoba FG, Thomas M. Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J Ethnopharmacol. 2001;76(1):73–6.View ArticlePubMedGoogle Scholar
- Franca CS, Menezes FS, Costa LCB, Niculau ES, Alves PB, Pinto JE, Marcal RM. Analgesic and antidiarrheal properties of Ocimum selloi essential oil in mice. Fitoterapia. 2008;79(7–8):569–73.View ArticlePubMedGoogle Scholar
- Abu Mohammed TI, Muhammad EU, Asharf UC, Mominur R, Razibul H, Atiar R. In vivo antidiarrheal and cytotoxic potential of different fractions of Pandanus Foetidus leaves. Am J Biomed Sci. 2013;5(3):208–16.Google Scholar
- Akah PA, Orisakwe OE, Gamaniel KS, Shittu A. Evalaution of Nigerian traditional medicine II: Effects of some Nigerian folk remedies on peptic ulcer. J Ethnopharmacol. 1998;62:123–7.View ArticlePubMedGoogle Scholar
- Gerhard VH. Drug discovery and evaluation, pharmacological assays (2nd edn.), Springer –Verlag Berlin Heidelberg, New York; 2002. 875–76 p
- Tadesse WT, Hailu AE, Gurmu AE, Mechesso AF. Experimental assessment of antidiarrheal and antisecretory activity of 80 % methanolic leaf extract of Zehneria scabra in mice. BMC Complement Altern Med. 2014;14:460.View ArticlePubMedPubMed CentralGoogle Scholar
- Utiérrez SP, Mendoz DZ, Munive AH, Martínez AM, González CP, Mendoza ES. Antidiarrheal activity of 19-deoxyicetexone isolated from Salvia ballotiflora Benth in mice and rats. Molecules. 2013;18:8895–905.View ArticleGoogle Scholar
- Hammond AC. Animal well-being in pharmacology and toxicology research. J Anim Sci. 1994;72:523–7.PubMedGoogle Scholar
- Pearn JH, Hegarty MP. Indospicine the teratogenic factor from Indigofera spicata extract causing cleft palate. Br J Exp Path. 1970;51:34.Google Scholar
- Li Y, Li C, Xu Q, Kang W. Antioxidant, α-glucosidase inhibitory activities in vitro and alloxan-induced diabetic rats protective effect of Indigofera stachyodes Lindl. root. J Med Plants Res. 2012;6(9):1524–31.Google Scholar
- Fletcher MT, Rafat AM, Jassim A, Cawdell-Smith AJ. The occurrence and toxicity of indospicine to grazing animals. Agriculture. 2015;5:427–40.View ArticleGoogle Scholar
- Schiller LR. Review article: anti-diarrheal pharmacology and therapeutics. Aliment Pharmacol Ther. 1995;9(2):87–106.PubMedGoogle Scholar
- Neimegeers CTE, Awouters F, Janssen PAJ. The castor oil test in rats: an in vivo method to evaluate antipropulsive and antisecretary activity of Antidiarrheals. Drug Dev Res. 1984;4:223–7.View ArticleGoogle Scholar
- Wojcikowski K, Wohlmuth H, Johnson DW, Rolfe M, Gobe G. An in vitro investigation of herbs traditionally used for kidney and urinary system disorders: potential therapeutic and toxic effects. Nephrology (Carlton). 2009;14:70–9.View ArticleGoogle Scholar
- Parekh J, Chanda S. In-vitro antimicrobial activities of extracts of Launaea procumbens Roxb. (Labiateae), Vitis vinifera L. (Vitaceae) and Cyperus rotundus L. (Cyperaceae). AJBR. 2006;9:89–93.Google Scholar
- Sarker SD, Latif Z, Gray AI. Metheds in biotechnology. Natural products isolation. 2nd ed. Totowa: Humana Press; 2006. p. 269–73.Google Scholar
- Tanko Y, Hayatu Z, Mohammed A, Goji AD, Musa KY, Yerima M. Effect of residual aqueous portion of hydro-methanolic leaves extract of Indigofera Pulchra on blood glucose levels of alloxan-induced diabetic Wistar rats. Int J Anim Veter Adv. 2009;1(1):18–21.Google Scholar
- Umer S, Tekewe A, Kebede N. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complement Altern Med. 2013;13:21.View ArticlePubMedPubMed CentralGoogle Scholar
- Venkatesan N, Thiyagarajan V, Narayanan S, Arul A, Raja S, Kumar SGV, Rajarajan T, Perianayagam JB. Antidiarrheal potential of Asparagus racemous wild root extracts in laboratoire animals. J Pharm Pharmaceut Sc. 2005;8(1):39–45.Google Scholar
- Goodman SL, Gilman A. The pharmacological basis of therapeutics. 9th ed. Health Professional Division, New York, USA: McGrow-Hill Publishers; 1996. 927 p