V. Bashige-Chiribagula Email author
H. Manya-Mboni
V. Ntabaza-Ndage
E. Numbi Ilunga
S. Bakari-Amuri
E. Kalonda Mutombo
J. Kahumba-Byanga
P. Okusa-Ndjolo
P. Duez
J. B. Lumbu-Simbi
Ethnopharmacologie
First Online:
06 January 2016
DOI : 10.1007/s10298-015-1004-5
Cite this article as:
Bashige-Chiribagula, V., Manya-Mboni, H., Ntabaza-Ndage, V. et al. Phytothérapie (2017) 15: 2. doi:10.1007/s10298-015-1004-5
Résumé
Une étude ethnobotanique, biologique et chimique a été effectuée à Lubumbashi de mars à juin 2013 en vue de recenser des plantes réputées anticariogènes, évaluer leur activité antibactérienne et y rechercher des substances bioactives. 33 personnes ressources (âge moyen 47,3 [extrêmes: 31-66] ans) ont permis de recenser 14 plantes appartenant à 11 familles dominées par les Fabaceae (21,4 %). Des diverses parties employées, les racines et les feuilles sont les plus fréquentes (28,6 %). Le bain de bouche à 51,1% est le plus sollicité des modes d’administration. Ces plantes sont aussi utilisées pour 15 autres fins thérapeutiques. Les extraits des feuilles d’Anisophyllea pomifera ont présenté l’activité la plus intéressante (CMI: 31,25 μg/ml; CMB: 62,5 μg/ml) sur Streptococcus mutans et sur Lactobacillus acidophillus (CMI: 62,5 μg/ml; CMB: 125 μg/ml). Des alcaloïdes, des saponines, des stéroïdes et des tannins ont été identifiés dans la même plante. Ces résultats pourraient justifier certains usages traditionnels d’A. pomifera et suscitent la poursuite des travaux en vue de l’isolement des molécules bioactives.
Mots clés
Anisophyllea pomifera Activité anticariogene Lactobacillus acidophilus Streptococcus mutans Lubumbashi
Références
1.
Fejerskov O (2004) Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 38: 182–91
CrossRef PubMed Google Scholar
2.
Sixou JL, Bailleul-Forestier I, Dajean-Trutaud S, et al. (2004) Recommandations sur la prescription des fluorures de la naissance à l’adolescence. J. Odont Stomatol Pediatr 11: 157–68
Google Scholar
3.
OMS (2012) Santé bucco-dentaire. Aide-mémoire n°318. Disponible sur http://www.who.int /mediacentr /factsheets/fs318/fr/
Google Scholar
4.
WHO (2003) Rapport sur la santé buccodentaire dans le monde. Disponible sur http://whqlibdoc.who.int /hq/2003/WHO_NMH_ NPH_ORH_03.2_fre.pdf
Google Scholar
5.
Diombana ML, Haidara OD, Küssner H, et al. (1998) Etude épidémiologique de la carie dentaire en milieu scolaire à Kati (Bilan Cao, Co et Fréquence Globale). Méd Afr Noire 45: 47–50
Google Scholar
6.
Järvinen H, Tenovuo J, Huovinen P (1993) In vitro susceptibility of
Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37: 1158–9
CrossRef PubMed PubMedCentral Google Scholar
7.
Kubo I, Muroi H, Himejima M (1993) Antibacterial activity against Streptococcus mutans of mate tea flavor components. J Agric Food Chem 41: 107–11
CrossRef Google Scholar
8.
Park KM, You JS, Lee HY, et al (2003) An antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol 84: 181–5
CrossRef PubMed Google Scholar
9.
Chung JY, Choo JH, Lee MH, et al (2006) Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13: 261–6
CrossRef PubMed Google Scholar
10.
Gomashe AV, Sharma AA, Kasulkar A (2014) Investigation of biofilm inhibition activity and antibacterial activity of
Psydium guajava plant extracts against Streptococcus mutans causing dental plaque. Internat J Curr Microbiol Appl Sci 3: 335–51
Google Scholar
11.
Kelmanson JE, Jäger AK, Van Staden J (2000) Zulu medicinal plants with antibacterial activity. J Ethnopharmacol 69: 241–6
CrossRef PubMed Google Scholar
12.
Smullen J, Koutsou GA, Foster HA, et al. (2007) The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 41: 342–9
CrossRef PubMed Google Scholar
13.
Jabashree HS, Kingsley SJ, Sathish ES, et al. (2011) Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens-an in vitro study. ISRN Dent 2011: 541421. doi:10.5402/2011/541421
Google Scholar
14.
Chaiya A, Saraya S, Chuakul W, et al. (2013) Screening for Dental Caries: Preventive Activities of Medicinal Plants against Streptococcus mutans. Mahindol University. J Pharmaceut Sci 40: 9–17
Google Scholar
15.
Fine DH, Furgang D, Barnett ML, et al. (2000) Effect of an essential oil-containing antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. J Clin Periodontol 27: 157–61
CrossRef PubMed Google Scholar
16.
Ishnava KB, Chauhan JB, Garg AA, et al. (2012) Antibacterial and phytochemical studies on
Calotropis gigantia (L.) R. Br. Latex against selected cariogenic bacteria. Saudi J Biol Sci 19: 87–91
CrossRef PubMed Google Scholar
17.
Hamada S, Slade HD (1980) Biology immunology and cariogenicity of Streptococcus mutans. Microbiol Res 44: 331–84
Google Scholar
18.
Dzoyem JP, Guru SK, Pieme CA, et al. (2013) Cytotoxic and antimicrobial activity of selected Cameroonian edible plants. BMC Complement Alternat Med 13: 78.doi:10.1186/1472-6882-13-78
CrossRef Google Scholar
19.
Perilla MJ (2003) Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in this Developing World. Georgia, USA, WHO, pp. 209–14
Google Scholar
20.
Hosgor LM, Ermertcan S, Eraç B, et al. (2011) An investigation of the antimicrobial impact of drug combinations against
Mycobacterium tuberculosis strains. Turk J Med Sci 41: 719–24
Google Scholar
21.
Kaya O, Akçam F, Yayli G (2012) Investigation of the in vitro activities of various antibiotics against
Brucella melitensis strains. Turk J Med Sci 42: 145–8
Google Scholar
22.
Biviti LF, Meko’o DJL, Tamze V, et al. (2012) Anticariogenic Activity of
Lagerstroemia speciosa (L.). Sci Technol Arts Res J 11: 53–6
Google Scholar
23.
Longanga O, Vercruysse A, Foriers A (2000) Contribution to the ethno botanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol 71: 411–23
CrossRef Google Scholar
24.
Dohou N, Yamni K, Tahrouch S, et al. (2003) Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Soc Pharm 142: 61–78
Google Scholar
25.
Prashant T, Bimlesh K, Mandeep K, et al. (2011) Phytochemical screening and Extraction: A Review. Internationale Pharmaceutica Sciencia 1: 98–106
Google Scholar
26.
Deshpande SN, Kadam DG (2013) Phytochemical analysis and antibacterial activity of
Acacia nilotica against streptococcus mutans. Internat J Pharm Pharmaceut Sci 5: 236–8
Google Scholar
27.
Muya K, Tshoto K, Cioci CC, et al. (2014) Survol ethnobotanique de quelques plantes utilisées contre la schistosomiase urogénitale à Lubumbashi et environs. Phytothérapie 12: 213–28
CrossRef Google Scholar
28.
Petit P, Mutete S, Kasandji A, et al. (2004) Apprentissage et transmission. Dans: Bunganga ya mici. Guérisseurs et plantes médicinales à Lubumbashi. Rapport de recherche effectué durant la deuxième session des travaux de l’observatoire octobre 2003-mars 2004. OCU-CUD. Vwakyanakazi M et Petit P (éditeurs). Lubumbashi, pp 33–62
Google Scholar
29.
Kambizi L, Afolayan AJ (2001) An ethnobotanical study of plants used for the treatment of sexually transmitted dideases (njovhera) in Guruve district. Zimbabwe. J Ethnopharmacol 77: 5–9
CrossRef PubMed Google Scholar
30.
York T, De Wet H, Van Vuurenb SF (2011) Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. J Ethno Pharmacol 135: 696–710
CrossRef Google Scholar
31.
Ssegawa P, Kasenene JM (2007) Medicinal plant diversity and uses in the Sango bay area Southern Uganda. J Ethnopharmacol 113: 521–40
CrossRef PubMed Google Scholar
32.
Giday M, Asfaw Z, Elmqvist T, et al. (2003) An ethno botanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol 85: 43–52
CrossRef PubMed Google Scholar
33.
Ibara JR, Elion-itou RDG, Etou-ossebi JM, et al. (2007) Enquête ethnobotanique à propos de plantes médicinales congolaises présumées anti-ulcereuses 5: 118–20
34.
Kuete V (2010) Potential of Cameroonian plants and derivedproducts against microbial infections: A review. Planta Med 76: 1479–91
CrossRef PubMed Google Scholar
35.
Rampadarath D, Puchooa D, Ranghoo-sanmukhiya M (2014) A comparison of polyphenolic content antioxidant activity and insecticidal properties of Jatropha species and wild
Ricinus communis L found in Mauritius. As Pac J Trop Med 7s1: s 384–90. Doi: 10.1016/51995-7645(14)
CrossRef Google Scholar
36.
Costa HP, Oliveira JT, Sonsa DO, et al. (2014) Jc TI-I: a novel trypsin inhibitor from
Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol DOI: 10.3389/fmicb 1201400005
Google Scholar
37.
Oskoueian E, Abdullah N, Ahmed S, et al. (2011) Bioactive compounds and biological activities of
Jatropha curcas L. kernel meal extract. Int J Mol Sci 12: 5955–70
CrossRef PubMed Google Scholar
38.
Dada ED, Ekundayo FO, Makunjuola OO (2014) Antibacterial activies of
Jatropha curcas (L) on coliforms isolated from surface waters in akure, Nigeria. Int Biomed Sci 10 (1):25–30
Google Scholar
39.
Manufo-Estrada DM, Segura-campos MR, Chei-Guerroro LA, et al. (2013) Defatted
Jatropha curcas flour and protein isolate as materials for protein hydrolusates with biological activity. Food Chem 138: 77–83
CrossRef Google Scholar
40.
Han C, Chen G, Song X, et al. (2012) A new asymetric diamide from the seed cake of
Jatropha curcas L. Fitotherapia 83: 1318–21
CrossRef Google Scholar
41.
Begum S, Wahab A Siddiqui BS (2008) Antimycobactérial activity of flavonoids from
Lantana Camara L. Nat Prod Res 22: 467–70
CrossRef PubMed Google Scholar
42.
Barre JT, Bwden BF, Coll JC, et al. (1997) A bioactive triterpene from
Lantana camara L. Phytochemistry 45: 321–4
CrossRef PubMed Google Scholar
43.
Begum S, Zehra SQ, Siddiqui BS, et al. (2008b) Pentacyclic triterpenoids from the aerial part of
Lantana camara and their nematicidal activity. Chim Biodivers 5: 1856–66
CrossRef Google Scholar
44.
Pradeep BV, Pardhu G, Shylaja S, et al. (2013) Phytochemical screening and antimicrobial activities of plant’s extract of
Lantana camara L. J Environ Biol 34 (3):645–9
PubMed Google Scholar
45.
Manzoor M, Anwar F, Sultana B, et al. (2013) Variation in antioxidant and antimicrobial activities in
Lantana camara L., flowers in relation to extraction methods. Acta sci Pol Technol Alim 12: 283-94
Google Scholar
46.
Ghosh S, Das SM, Patra A, et al. (2010) Anti-inflammatory and anticancer compounds isolated from
Ventilago madraspatana Gaertn,
Rubia cordifolia L and
Lantana camara L. J Pharm Pharmacol l 62: 1158–66
CrossRef Google Scholar
47.
Noumedem JA, Tamokou JD, Teke GN, et al. (2013) Phytochemical analysis antimicrobial and radical-scavenging properties of
Acalypha mannaniana leaves. Springer plus 2: 503; doi: 10.1186/213-1801-2-503
CrossRef PubMed PubMedCentral Google Scholar
48.
Brusotti G, Cesari I, Frassà G, et al. (2011) Antimicrobial properties of stem bark extracts from
Phyllanthus muellerianius (Kuntze) Excell. J Ethnopharmacol 135: 797–800
CrossRef PubMed Google Scholar
49.
Brusotti G, Cesari I, Gilardoni G, et al. (2012) Chemical composition and antimicrobial activity of
Phyllanthus muellerianus (Kuntze) Excel essential oil. J Ethnopharmacol 142: 657–62
CrossRef PubMed Google Scholar
© Springer-Verlag France 2015