twitter

Monday, 15 February 2016

[Computer evaluation of hidden potential of phytochemicals of medicinal plants of the traditional Indian ayurvedic medicine].

2015 Mar-Apr;61(2):286-97. doi: 10.18097/PBMC20156102286.


[Article in Russian]

Abstract

Applicability of our computer programs PASS and PharmaExpert to prediction of biological activity spectra of rather complex and structurally diverse phytocomponents of medicinal plants, both separately and in combinations has been evaluated. The web-resource on phytochemicals of 50 medicinal plants used in Ayurveda was created for the study of hidden therapeutic potential of Traditional Indian Medicine (TIM) (http://ayurveda.pharmaexpert.ru). It contains information on 50 medicinal plants, their using in TIM and their pharmacology activities, also as 1906 phytocomponents. PASS training set was updated by addition of information about 946 natural compounds; then the training procedure and validation were performed, to estimate the quality of PASS prediction. It was shown that the difference between the average accuracy of prediction obtained in leave-5%-out cross-validation (94,467%) and in leave-one-out cross-validation (94,605%) is very small. These results showed high predictive ability of the program. Results of biological activity spectra prediction for all phytocomponents included in our database are in good correspondence with the experimental data. Additional kinds of biological activity predicted with high probability provide the information about most promising directions of further studies. The analysis of prediction results of sets of phytocomponents in each of 50 medicinal plants was made by PharmaExpert software. Based on this analysis, we found that the combination of phytocomponents from Passiflora incarnata may exhibit nootropic, anticonvulsant and antidepressant effects. Experiments carried out in mice models confirmed the predicted effects of Passiflora incarnata extracts.


Abstract

Issledovana primenimost' razrabotannykh nami komp'iuternykh programm PASS i PharmaExpert k analizu spektrov biologicheskoĭ aktivnosti dostatochno slozhnykh i raznoobraznykh po strukture fitokomponentov lekarstvennykh rasteniĭ, kak po-otdel'nosti, tak i v kombinatsiiakh. S étoĭ tsel'iu byla sozdana baza dannykh, soderzhashchaia izvestnuiu informatsiiu o strukturnykh formulakh i biologicheskoĭ aktivnosti 1906 fitokomponentov 50 lekarstvennykh rasteniĭ iz traditsionnoĭ indiĭskoĭ meditsiny (TIM) Aiurveda (ayurveda.pharmaexpert.ru). Obuchaiushchaia vyborka programmy PASS byla popolnena informatsieĭ o strukture i biologicheskoĭ aktivnosti 946 prirodnykh soedineniĭ; provedeny obuchenie i validatsiia, pozvolivshie otsenit' kachestvo prognoza PASS. Pokazano, chto razlichiia mezhdu znacheniiami sredneĭ tochnosti prognoza pri kross-validatsii s razbieniem vyborki na 20 chasteĭ (94,467%) i pri skol'ziashchem kontrole s iskliucheniem po odnomu (94,605%) neznachitel'ny, chto svidetel'stvuet o khorosheĭ prognosticheskoĭ sposobnosti programmy. Rezul'taty prognoza spektrov biologicheskoĭ aktivnosti dlia vsekh vkliuchennykh v nashu bazu dannykh fitokomponentov v 83,5% sluchaev sovpali s izvestnymi éksperimental'nymi dannymi. Predskazannye s vysokoĭ veroiatnost'iu dopolnitel'nye vidy aktivnosti ukazyvaiut na perspektivnye napravleniia dal'neĭshikh issledovaniĭ otdel'nykh fitokomponentov lekarstvennykh rasteniĭ. S pomoshch'iu komp'iuternoĭ programmy PharmaExpert my vypolnili analiz rezul'tatov prognoza dlia kombinatsiĭ fitokomponentov, soderzhashchikhsia v otdel'nykh lekarstvennykh rasteniiakh TIM. Na osnove étogo analiza ustanovleno, chto kombinatsiia fitokomponentov rasteniia Passiflora incarnata mozhet obladat' nootropnym, protivosudorozhnym i antidepressantnym éffektami. Poluchennye v éksperimentakh na myshinykh modeliakh rezul'taty podtverdili nalichie prognoziruemykh vidov biologicheskoĭ aktivnosti u ékstraktov Passiflora incarnata.

KEYWORDS:

Ayurveda; PASS; PharmaExpert; SAR; biological activity; computational prediction; medicinal plants; phytocomponents


KEYWORDS:

Ayurveda; PASS; PharmaExpert; SAR; biological activity; computational prediction; medicinal plants; phytocomponents