Available online 27 March 2015
A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout
- Under a Creative Commons license
Open Access
Abstract
Ethnopharmacological relevance
Modified
Simiaowan (MSW) is a traditional Chinese medicine (TCM) formula and is
widely used as a clinically medication formula for its efficiency in
treating gouty diseases.To predict the active ingredients in MSW and
uncover the rationality of herb combinations of MSW.
Materials and methods
Three
drug-target networks including the “candidate ingredient-target
network” (cI-cT) that links the candidate ingredients and targets, the
“core ingredient-target-pathway network” connecting core potential
ingredients and targets through related pathways, and the “rationality
of herb combinations of MSW network”, which was derived from the cI-cT
network, were developed to dissect the active ingredients in MSW and
relationship between ingredients in herb combinations and their targets
for gouty diseases. On the other hand, herbal ingredients comparisons
were also conducted based on six physicochemical properties to
investigate whether the herbs in MSW are similar in chemicals. Moreover,
HUVEC viability and expression levels of ICAM-1 induced by monosodium
urate (MSU) crystals were assessed to determine the activities of
potential ingredients in MSW.
Results
Predicted
by the core ingredient-target-pathway network, we collected 30 core
ingredients in MSW and 25 inflammatory cytokines and uric acid
synthetase or transporters, which are effective for gouty treatment
through some related pathways. Experimental results also confirmed that
those core ingredients could significantly increase HUVEC viability and
attenuate the expression of ICAM-1, which supported the effectiveness of
MSW in treating gouty diseases. Moreover, heat-clearing and
dampness-eliminating herbs in MSW have similar physicochemical
properties, which stimulate all the inflammatory and uric acid-lowing
targets respectively, while the core drug and basic prescription in MSW
stimulate the major and almost all the core targets, respectively.
Conclusion
Our
work successfully predicts the active ingredients in MSW and explains
the cooperation between these ingredients and corresponding targets
through related pathways for gouty diseases, and provides basis for an
alternative approach to investigate the rationality of herb combinations
of MSW on the network pharmacology level, which might be beneficial to
drug development and applications.
Abbreviations
- MSU, monosodium urate;
- NSAIDs, non-steroidal anti-inflammatory drugs;
- UA, uric acid;
- TCM, traditional Chinese medicine;
- MSW, Modified-Simiaowan;
- EM, Ermiao;
- SM, Simiao;
- AR, Atractylodes chinensis (DC.) Koidz.;
- PC, Phellodendron chinense Schneid.;
- AB, Achyranthes bidentata Bl.;
- CS, Coix lacryma-jobi L. var. mayuen (Roman.) Stapf;
- LJ, Lonicera japonica Thunb.;
- SG, Smilax glabra Roxb.;
- ICAM-1, intercellular cell adhesion molecule;
- OB, oral bioavailability;
- DL, drug-likeness;
- MW, molecular weight;
- nHDon, number of donor atoms for H-bonds;
- nHAcc, number of acceptor atoms for H-bonds;
- MLOGP, Moriguchi octanol–water partition coeff. (logP);
- DMEM, Dulbecco’s modified Eagle’s medium;
- FBS, fetal bovine serum;
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
- SD, standard deviation;
- IL-1β, interleukin -1 beta;
- TNF-ɑ, tumor necrosis factor-alpha;
- PTGS2, prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase);
- COX, cyclooxygenase;
- P13K, phosphotylinosita l3 kinase;
- MAPK1, mitogen-activated protein kinase-1;
- TGFB1, transforming growth factor, beta 1;
- XOD, xanthine oxidase;
- OAT1, organic anion transporter 1;
- URAT1, urate-anion transporter1;
- GLUI9, glucose transporter 9;
- LEP, leptin;
- ABCG2, ATP-binding cassette sub-family G member 2;
- NF-ƙB, nuclear factor-kappa B;
- TLR, toll-like receptor.
Keywords
- Modified Simiaowan;
- Gout;
- Network pharmacology;
- Active ingredients;
- Herb combinations
1. Introduction
Hyperuricemia
is predictive for the development of gout, renal dysfunction,
hypertension and hyperlipidemia, which is one of the most common and
extensive metabolic diseases in populations (Richette and Bardin, 2010).
Gout is a common metabolic disorder in human that afflicts about 8.3
million people in the United States, 6.4 million in the European Union,
and 2.9 million in Japan in 2008 (Miao et al., 2008, Doherty, 2009 and Zhu et al., 2011).
The disease is also rapidly rising in China probably due to recent
changes in dietary habits. Preventing and treating the occurrence of
hyperuricemia and gout become imperative in contemporary clinical
therapy, but there are lack of effective means to control acute gouty
arthritis.
Gout
is a type of inflammatory arthritis induced by deposition of monosodium
urate (MSU) crystals in the joints and kidneys, where MSU crystals
stimulate monocytesmacrophages and neutrophils to produce different
pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor
necrosis factor (TNF)-α (Tausche et al., 2004) and monocyte chemotactic factor (Inokuchi et al., 2006).
Despite advances in the application of anti-gout drugs for the
treatment, non-steroidal anti-inflammatory drugs (NSAIDs) such as
indomethacin, as first-line agents, are commonly used for acute
inflammation. However, according to epidemiological study, NSAIDs, which
play an important role in terms of anti-inflammation by inhibiting the
activity of cyclooxygenase (COX) (Yuan et al., 2000), show some adverse effects including renal toxicity, gastrointestinal toxicity and gastrointestinal bleeding (Sabina et al., 2011).
Besides, Colchicine inhibits the propagation of inflammation by
suppressing several genes encoding Caspase-1 such as phosphotylinosita
l3 kinase (P13K) and mitogen-activated protein kinase-1 (MAPK1), which
could reduce the release of mature IL-1 (Ben-Chetrit et al., 2005). Nevertheless, it is still limited and often poorly tolerated because of severe gastrointestinal reactions and toxicity (Borstad et al., 2004). Besides, underexcretion of urate has been implicated to produce gouty diseases (Rott and Agudelo, 2003 and Lioté, 2003).
Ways to reduce uric acid (UA) levels can be classified into two types:
decreasing UA synthesis with inhibitory activities of xanthine oxidase
(XOD) and promoting UA excretion by stimulating some transporters such
as organic anion transporter 1 (OAT1), urate-anion transporter 1
(URAT1), glucose transporter 9 (GLUI9) and leptin (LEP), which are
important for drugs to treat Hyperuricemia (Sha and He, 2009 and Tong et al., 2013). Allopurinol is a frequently used XOD inhibitor in clinical use (Horiuchi et al., 2000 and Chen et al., 2005), and benzbromarone is an uricosuric agent by inhibiting the main renal UA transporter URAT1 (Kunishima et al., 2007). Nevertheless, both of them may result in allergic, sever hypersensitivity reactions, and nephropathy (Hande et al., 1984 and Kumar et al., 2005). Therefore, it underlines much impetus for urgent need of available anti-gout agents, especially herbal medicine (Ahmad et al., 2008 and An et al., 2010).
Traditional
Chinese medicine (TCM) is a comprehensive medicinal system that has
been used in clinical practice for thousands of years, whose
applications have been raised dramatically around the world in recent
decades because of their moderate treatment effects and lower side
effects (Tang et al., 2009).
Modified-Simiaowan (MSW) is widely used clinically as a formula for its
prominent efficiency in terms of TCM for treating gouty diseases, such
as gout, hyperuricemia and inflammatory arthritis (Yin and Si, 2006), which is a patented invention of the Chinese (Yin et al., 2008). It is made up of six herbs: Phellodendron chinense Schneid. (PC), Atractylodes chinensis (DC.) Koidz. (AR), Achyranthes bidentata Bl. (AB), Coix lacryma-jobi L. var. mayuen (Roman.) Stapf (CS), Smilax glabra Roxb. (SG) and Lonicera japonica
Thunb. (LJ) and has been used in treating gouty diseases for its
efficiency in anti-inflammation, analgesia and the reduction of UA
levels (Shi et al., 2008).
In
this formula, Ermiao (EM), also called as the core drug, which is
composed of PC and AR, is a classical formula and recorded in State
Pharmacopoeia of People’s Republic of China at all times for successful
treatment of gout and hyperuricemia. According to Danxi’s China, EM is
described to treat acute gout through clearing heat and eliminating
dampness in terms of TCM. Simiao (SM), a classical formula, which is
derived from EM with additions AB and CS. According to
Cheng-Fang-Bian-Du (a Chinese medicine book named Conventional
Prescriptions for Easily Reading), SM is commonly used to treat gout
through clearing heat, eliminating dampness and strengthening the liver
and kidney in terms of TCM (Shi et al., 2008; Hu et al., 2010; Hua et al., 2012).
Recent
researches have demonstrated that MSW could inhibit the occurrence of
acute gout by suppressing the expression of intercellular cell adhesion
molecule (ICAM-1), protecting HUVECs
by reducing cell apoptosis, increasing cell viability in MSU-induced
HUVECs, and weakening adhesion between neutrophil and endothelial cells (Shi et al., 2013).
Moreover, MSW could significantly reduce UA levels in serum and urine
in hyperuricemic model, together with decreasing liver XOD activity and
IL-1β, IL-6 levels (Zeng et al., 2014)
and has a better anti-gouty inflammation effect compared with
indomethacin in the clinical study (Shi et al., 2008). All the results
indicate that MSW is a comprehensive therapeutic formula with
multi-approaches for gouty diseases. However, the active ingredients and
the rationality of herb combinations of MSW through integrated multiple
pathways for gouty treatment are still unclear.
With
the rapid progress of bioinformatics, systems biology and
polypharmacology, network-based drug discovery is considered a promising
approach toward more cost-effective drug development (Keith et al., 2005, Schadt et al., 2009, Jia et al., 2009 and Levinson, 2010).
Network pharmacology can reveal the underlying complex relationship
between a herbal formula and the whole targets. Besides, this
sustainable development platform coupling with rich experience of TCM is
hopeful of shifting the paradigm “one target, one drug” to the “network
targets, multi-components” strategy (Li and Zhang, 2013).
Our
previous studies have shown that “network target” as a key concept of
TCM network pharmacology can help us to decipher active ingredients in
MSW and rationality of herb combinations of MSW. In present study, we
first manually collected the information of targets reported for main
active ingredients in MSW and targets of gouty diseases from OMIM, and
selected those gouty genes that are targeted by the corresponding
ingredients as the candidate targets. After oral bioavailability (OB)
screening and drug-likeness (DL) evaluation, potential ingredients and
targets could be obtained. In order to predict the active ingredients in
MSW and uncover the rationality of herb combinations of MSW,
drug-target networks have constructed to this formula, which offers an
opportunity for deep understanding of the efficiency and rationality of
TCM in ways for the prevention of gouty diseases.
2. Material and methods
2.1. Chemical ingredients database building
A
total of 631 chemical constituents of all six individual herbs in MSW
were retrieved from Traditional Chinese Medicine Systems Pharmacology
Database (TcmSP™, http://tcmspnw.com)
and related literatures. TcmSP™ is a unique systems pharmacology
platform designed for herbal medicines, from which 49 ingredients in AR,
58 in PC, 176 in AB, 38 in CS, 74 in SG, and 236 in LJ were all
collected.
2.2. The properties of ingredients in MSW
In
order to investigate whether the six individual herbs in MSW are
similar or different in chemicals, herbal ingredients comparisons based
on chemical properties were performed. The important
pharmacology-related properties including molecular weight (MW), the
number of donor atoms for H-bonds (nHDon), the number of acceptor atoms
for H-bonds (nHAcc) and Moriguchi octanol–water partition coeff. (logP)
(MLOGP) are also collected from TcmSP™ for each ingredient. These four
parameters reflect the basic characteristic of a molecule ( Lipinski et al., 1997).
Next, OB and DL properties of each herb ingredient were collected from
the same database, which describe the physicochemical property and
pharmacological feature of every ingredient. Therefore, the histograms
of the physicochemical properties of all ingredients accompanying with t-test were carried out to analyze the variables in the property spaces.
2.3. Data preparing
2.3.1. Predicting target profiles of main active ingredients in MSW
Based
on our pervious study and literature, the main ingredients in MSW were
all obtained, such as the volatile oil in AR, alkaloids in PC, saponins
in AB and flavonoids in LJ. We collected all their targets profiles from
PubMed or SciFinder, and then removed the ones with no targeting
information. After that, we extracted the relevant targets profiles of
important ingredients. For the reason that some contain protein and gene
files from different species, the demand for standardization of the
information is necessary. We limited the species as “Homo sapiens” when
entering the gene or protein target with the genetic search function in
the NCBI database (http://www.ncbi.nlm.nih.gov/gene),
which could obtain all the targets having revised to their official
names, including multiple subtypes of genetic information. After the
above retrieval and transformation, we gained distinct target files
associated with main active ingredients.
2.3.2. Gout-associated targets
We
collected different genes associated with gout from the following
resources. (1) The Online Mendelian Inheritance in Man (OMIM) database,
which catalogues all known diseases with a genetic component and when
possible links them to the relevant genes in the human genome and
provides references for further research and tools for genomic analysis
of a catalogued gene (Hamosh et al., 2005).
We searched the OMIM database with a keyword “gout” and found a set of
genes, such as ABCG2, GLUT9, TNF-α, IL-8. (2) Genecards
(http://www.genecards.org), it is a database about genes, their products
and biomedical applications, which is maintained by Israel’s Weizmann
Institute of science. (3) Literatures, we could collect some significant
targets from gouty related literatures.
Based on the above three methods, we collected 277 distinct targets associated with gouty diseases.
2.4. Candidate ingredients and their corresponding targets prediction
Compared
the target files of ingredients in MSW collected from literature with
gouty genes from databases, we selected those gouty genes that could be
targeted by the corresponding ingredients as the candidate targets. The
candidate targets and corresponding ingredients are useful for the
following study.
2.5. Oral bioavailability screening and drug-likeness evaluation
Generally,
a TCM formula covers various chemicals, bioactive ingredients can
contribute to its therapeutic effects. Hence, it is essential to conduct
the OB screening and DL evaluation for the goal to identify the
potential active ingredients in this formula.
2.5.1. OB screening
A robust in-house system OBioavail1.1 (Xu et al., 2012),
is applied to calculate the OB value, which is efficient in screening
out the potential ingredients. In this work, the OB threshold was
defined as 30% and those ingredients with OB≧30% were selected as the
ingredients for further analysis.
2.5.2. DL prediction
In this study, DL index of a new compound is calculated by Tanimoto similarity defined as
where A represents the new ingredient, and B
is the average molecular properties of all ingredients in Drug-Bank
database. According to this result, we removed those ingredients with
DL<0.1.
Briefly speaking, ingredients that meet both of the requirements OB≧30% and DL≧0.1 were selected as the potential ingredients.
2.6. Construction of network
In
our present study, the content for construction of network was
performed as following, (1) the “candidate ingredient-target network”
was established by connecting the candidate ingredients and all their
corresponding targets, (2) the “core potential ingredient-target-pathway
network” was also constructed after OB screening and DL evaluation, by
linking the potential ingredients and targets with high degree through
related pathways, (3) the “rationality of herb combinations of MSW
network”, which describes the complex relationship between herbs
combined in MSW based on herbal ingredients comparisons. All the
networks were created using network visualization software Cytoscape
2.8.2 (http://www.cytoscape.org/),
which is an open source software project for integrating biomolecular
interaction networks with high-throughput expression data and other
molecular states into a unified conceptual framework, in order to
facilitate scientific interpretation of complex relationships between
medicines involved in formula orchestration (Shannon et al., 2003).
2.7. Experimental validation
2.7.1. Drugs and preparation
Chlorogenic
Acid (no. 110753200413), Berberine (no. 713 9906), Astilbin (with a
purity of 98% determined by HPLC), Caffeic acid and Ferulic acid were
purchased from National Institute for the Control of Biological
Products. Dulbecco’s modified Eagle’s medium (DMEM) (Gibco BRL, Grand
Island, NY, USA), Fetal bovine serum (FBS) (Hangzhou Sijiqing Co., Ltd.,
China), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (AERESCO, USA), Uric acid (Sigma St. Louis, MO, USA), Indomethacin
(no. 030901, Shanghai Yanan Vientiane Pharmaceutical Co., Ltd.) were
used in this experiment. Other reagents were of analytical grade from
commercial suppliers and manufactured in the People’s Republic of China.
Berberine
(2.5 mg), Astilbin (2.5 mg), Chlorogenic Acid (2.5 mg), Ferulic acid
(2.5 mg) and Caffeic acid (2.5 mg), DMSO was dissolved in every solution
at concentration less than 0.02%, Serum-free DMEM culture medium was
added into the five solutions at concentration of 2.5 µg/ml, 25 µg/ml
and 250 µg/ml. Approximately 4 g of uric acid was dissolved and heated
in 800 ml of H2O with NaOH (9 ml/0.5 N), adjusted to pH 8.9
at 60 1 C, cooled overnight in a cold room, washed, and dried. MSU
crystals, needle-like crystals were recovered and were suspended in
sterile saline (20 mg/ml) (Denko and Whitehouse, 1976).
2.7.2. Cells culture and treatment
HUVECs
were provided by basic medical college from Nanjing university of
Chinese medicine, and were isolated as described previously (De Martin et al., 1993). The cells were grown in DMEM culture medium containing 10% FBS at 37 °C in a humidified atmosphere of 5% CO2
and 95% air after digested by 0.25% trypsin, neutralized with the same
DMEM, then centrifuged 6 min at 1000 r/min and discarded the supernate.
Cells were then serially passaged with 0.25% trypsin/1 mM.
2.7.3. Detection on HUVECs activity stimulated by MSU
HUVECs
were washed three times with DMEM culture medium containing 10% FBS
after digested by 0.25% trypsin, centrifuged, and modulated the cell
suspension at density of 4×104/ml with the same DMEM, then
seeded onto a 96-well culture plate at density of 200 μl/well and
incubated at 37 °C for 24 h. The medium was replaced with the following
groups (8 well/group), then incubated at 37 °C in a humidified
atmosphere of 5% CO2 and 95% air for 48 h, and collected the
supernatant. The rest of endothelial cells were used to measure cell
viability using MTT assay (Welde, 1992).
MTT was added to cell cultures at concentration of 0.5 mg/ml. After
4 h, MTT was discarded and the formazan crystals were dissolved by
adding 200 μl of dimethyl sulfoxide.
The
absorbance at 490 nm was read on a microplate reader (Bio-Rad,
Hercules, CA, USA). Absorbance, which was used as a measurement of cell
viability, was normalized to cells incubated in the control medium. The
cells were considered 100% viable. The percentage of cell viability was
calculated as follows: cell viability %=b/a×100%. Here, a is the absorbance of the control, and b
is the absorbance of cells with MSU crystals. Groups: blank group (DMEM
culture medium 200 μl), model group (MSU 100 µg/ml), Indomethacin (MSU
100 µg/ml and Indomethacin 20 µg/ml), five low dosage groups (MSU
100 µg/ml and Berberine, Astilbin, Chilrogenic acid, Caffeic acid,
Ferulic acid 2.5 µg/ml); five middle groups (MSU 100 µg/ml and
Berberine, Astilbin, Chilrogenic acid, Caffeic acid, Ferulic acid
25 µg/ml), five large groups (MSU 100 µg/ml and Berberine, Astilbin,
Chilrogenic acid, Caffeic acid, Ferulic acid 250 µg/ml)
2.7.4. Detection on expression of ICAM-1
HUVECs
were seeded into tissue culture flask under logarithmic growth phase
after digested by 0.25% trypsin, and prepared into cell suspension at
the density of 5×109 l−1. After about 24 h, the
supernatant was discarded. Groups: control group, model group (MSU
100 µg/ml), Indomethacin (MSU 100 µg/ml and Indomethacin 2.5 µg/ml),
five drug groups (MSU 100 µg/ml and Berberine, Astilbin, Chilrogenic
acid, Caffeic acid, Ferulic acid 2.5 µg/ml).
HUVECs
were cultured for 24 h and collected by PBS. The supernatant was
removed by centrifugation and then CD54 monoclonal antibody was added
in. HUVECs were washed with PBS and resuspended after 30 min, Detect the
percentage of positive cells by flow cytometry (FCM) and repeated for 3
times. The percentage of the expression of ICAM-1 was calculated as
follows: Inhibition rate %=b/a×100%. Here, a is the value of the control, and b is the value of cells with MSU crystals.
3. Results
3.1. Herbal ingredients comparisons in MSW
MSW
consists of six herbs, including AR, PC, AB, CS, LJ and SG. In order to
investigate whether the six herbs are similar or different in
chemicals, herbal ingredients comparisons were conducted based on six
significant properties: MW, nHDon, nHAcc, MLogP, OB and DL. (1) From the
average number of MWs (Fig. 1 and Table 1), we could see that the values of MWs are similar (p=0.73) for AR (300.42) and CS (361.74), as well as the values (p=0.93) for PC (363.57) and SG (367.04), while AB (405.94) is significantly higher than that of PC (p=0.0026) and LJ (p=0.0212).
(2) The ingredient in CS is most hydrophobic with the average number of
MlogP of 7.16, which is higher than AR of 4.27, followed by AB, PC and
SG, which share the similar values. While for LJ, its average number of
MLogP exhibits the lowest degree. (3) The average number of H-bond
donors of AR is similar with CS (p=0.053), while AB (3.80) is larger than that of other herbs, especially CS of 0.76 (p=0.00058).
(4) The average of H-bond acceptors (HAcc) of AB (7.98) is
significantly larger than AR of 2.51 (1.14E−15) and CS of 2.5
(2.12E−14). (5) The OB and DL analysis indicate much difference among
these six herbs. For OB, we could realize that SG exhibits the highest
value of 33.24, followed by AR and CS, which possess the similar OB
values, and AB exhibits the lowest (22.28), which is significantly
different from others. (6) For DL, unlike OB distribution, PC possesses
the highest average value of 0.49, followed by CS of 0.32 and AB of
0.31. Whereas LJ shows the lowest average DL index (0.23). Besides, AR
and SG exhibit the similar values (AR=0.29, SG=0.25), which display no
significant difference (p=0.42).
Index AR PC AB CS LJ SG MW 300.42 363.57 (136.00#) 405.94 (200.10##,270.91*) 361.74 (157.94, 156.44) 307.7 (189.50, 190.22) 367.04 (129.68, 223.87) ALogP 4.27 3.29(2.37) 3.505 (2.63,2.63) 7.16 (2.59##, 3.78**) 2.5 (3.16##,3.11) 3.25 (2.93, 2.89) Hdon 1.31 1.62(1.85) 3.9 (3.27##, 3.27**) 0.76 (1.25, 1.70*) 2.38 (2.90#,2.92) 3.08 (2.19##, 3.20**) Hacc 2.51 5.03(3.08##) 7.98 (5.43##, 6.11**) 2.5 (2.16, 2.82**) 4.87 (5.12##,5.03) 6.08 (3.38##, 5.07) OB 32.90 32.3(14.51) 22.28 (17.32##, 17.71**) 32.90 (13.98, 15.43) 30.01 (20.02, 20.20) 33.24 (20.08, 20.49) DL 0.29 0.49(0.31##) 0.31 (0.30, 0.32**) 0.32 (0.28, 0.30**) 0.23 (0.26, 0.28**) 0.25 (0.27, 0.30**) - SD, standard deviation; AR, Atractylodes chinensis (DC.) Koidz.; PC, Phellodendron chinense Schneid.; AB, Achyranthes bidentata Bl.; CS, Coix lacryma-jobi L. var. mayuen (Roman.) Stapf; LJ, Lonicera japonica Thunb.; SG, Smilax glabra Roxb
-
- ##
- p<0.01.
- #
- p<0.05 when compared with AR.
- ⁎⁎
- p<0.01.
- ⁎
- p<0.01 when compared with PC.
In
general, all the results show that although there are diverse
ingredients in six herbs, many of them still have similar chemical
properties. To some extent, as dampness-eliminating herbs, the
properties of AR are similar with CS, the same as PC and LJ, which play
an important role in clearing heat. What’s more, SG has somewhat similar
properties with AR.
3.2. Targets prediction in the cI-cT Network
It
could be meaningful to bridge ingredients in MSW and gouty diseases via
their common targets. We constructed the candidate ingredient-target
network (cI-cT), which contains active ingredients in this formula and
their corresponding targets, and then mapped these nodes onto the
network. As depicted in Fig. 2,
44 candidate ingredients in this formula yielded 71 targets with
anti-inflammatory and UA-lowering therapeutic effects. Targets in the
outer circle show much less interactions with the candidate ingredients
than those in the inner, which also indicate that many candidate targets
are hit by only one candidate ingredient, but some could be modulated
by multiple rather than single one. For example, some inflammatory
cytokines such as IL-6, PTGS2, MAPK1, are activated by multiple
ingredients including Wogonin, Berberine, Luteoline. Besides, some UA
synthetase XOD and transporters OAT1, GLUT9, could also be modulated by
more than one. Thus, we could have a rough observation on the
relationships between candidate ingredients and corresponding targets
from the cI-cT network.
3.3. OB prediction and DL evaluation of candidate ingredients in MSW
OB
represents a subcategory of absorption and is the fraction of the
orally-administered does that reaches the systemic circulation unchanged
(Xu et al., 2012).
It is one of the essential used pharmacokinetic parameters in drug
screening cascades. While DL is a qualitative concept used in drug
design for how “drug-like” a substance is with respect to factors like
OB. It is estimated from the molecular structure before the substance is
even synthesized and tested. In order to further screen out the
potential active ingredients from the candidate ingredients in MSW, OB
prediction and DL evaluation were conducted. As listed in Table 2, the OB and DL calculation show that 31 of 44 candidate ingredients in MSW possess proper values.
No. Compound OB DL Structure ARM1 Beta eudesmol 29.97 0.1 ARM2 Palmitic acid 19.3 0.1 ARM3 AtractylenolideI 37.37 0.15 ARM4 Atractylenolide III 31.66 0.17 ARM6 Wogonin 30.68 0.23 ARM8 Vanillic acid 35.47 0.04 PCM1 Syringin 14.64 0.32 PCM2 Berberine 36.86 0.78 PCM3 Jatrorrhizine 19.65 0.59 PCM5 Obacunone 43.29 0.77 PCM6 Tetrahydroberberine 53.83 0.77 ABM2 Beta sitosterol 36.91 0.75 ABM4 Ecdysterone 6.94 0.82 ABM5 Betaine 40.92 0.01 CSM1 Coixol 63.01 0.05 CSM2 Coixenolide 32.4 0.43 CSM3 Oleic acid 33.13 0.14 CSM4 Triglyceride 33.61 0.03 LJM1 Luteoline 36.16 0.25 LJM5 Chlorogenic acid 13.61 0.31 LJM6 Caffeic acid 54.97 0.05 LJM7 Ferulic acid 40.43 0.06 LJM8 Rutin 11.7 0.683 SGM1 Quercetin 46.43 0.28 SGM2 Astilbin 36.46 0.74 SGM3 Taxifolin 60.51 0.27 SGM4 Epicatechin 48.96 0.24 SGM6 Kaempferol 41.88 0.24 SGM7 Resveratrol 19.07 0.11 SGM8 Oxyresveratrol 109.29 0.13 SGM9 Dioscin 17.75 0.06
3.3.1. AR
The rhizome of A. chinensis
(DC.) Koidz. has been used widely in Chinese traditional medicine for
various indications such as rheumatic diseases, digestive disorders,
night blindness, and influenza. These traditional uses are explained by
the compound’s ability to eliminate dampness, strengthen the spleen,
expel wind-cold from the superficial parts of the body, and clear away
the common cold ( Koonrungsesomboon et al., 2014).
Of 11 ingredients with corresponding targets in which 70.45% have
appropriate OB (≧30%) and DL values (DL≧0.1), including β-Eudesmol,
Palmitic acid, Wogonin, Atractylenolide І, Atractylenolide III, Vanillic
acid. As seen in Table 2,
almost all the ingredients have relatively moderate bioavailability
(OB≈30%). However, Vanillic acid, as an active ingredient in AR,
exhibits low DL value (OB=35.47%, DL=0.04). Considering its UA-lowing
effect through targeting uarte synthetase and transporters ( Oskoueian et al., 2011 and Wang and Sweet, 2012), it was also selected for the further study.
3.3.2. PC
Cortex Phellodendri, known as “Huang Bai”, is derived from the dried bark of P. chinense Schneid. or Phellodendron amurense Rupr. (Family Rutaceae) according to Chinese Pharmacopoeia Commission 2010. It is one of the most commonly used traditional Chinese medicinal plants, which is widely used to remove damp heat, quench fire, counteract toxicity, relieve consumptive fever and also effective in curing dysentery, diarrhea and other syndromes ( Yen, 1994). Among the six active ingredients in PC, five of themhave suitable OB and DL values, including Berberine, Jatrorrhizine, Obacunone, Tetrahydroberberine and Syringing. However, Jatrorrhizine and Syringing, the main active components in PC ( Zhang et al., 2012), exhibit low DL values (19.65%, 14.64%). Considering their potential pharmacological effects ( Hu et al., 2009 and Gong et al., 2014), they were still adopted for the further targeting.
3.3.3. AB
A. bidentata Blume (Amaranthaceae family), a perennial herbaceous plant, is widely distributed and grown in China. The roots of A. bidentata
Blume have proven to possess many pharmaceutical properties, including
immunostimulant, anti-inflammatory, antitumor, analgestic,
cognition-enhancing, anti-osteoporotic, anti-bacterial, uteri-excitant
and antifertility activities ( Li et al., 2007).
However, only three from the candidate ingredients could be used for
further targeting. Although Ecdysterone has poor OB value (OB=6.94), it
is one of the representative ingredients of AB ( Shen et al., 2011).
As for Betaine, which exhibits low DL value (DL=0.01), it is also one
of the major ingredients for lowering UA, and could protect the
occurrence of inflammation by inhibiting many inflammatory cytokines ( Fan et al., 2014). In view of considerations above, we selected the two ingredients as potential ingredients.
3.3.4. CS
CS is the dry and ripe seeds of C. lacryma-jobi L. var. mayuen
(Roman.) Stapf, which first sets out in “Shen Nong’s Herb”, and has the
effects of clearing damp and promoting dieresis, invigorating the
spleen and stopping diarrhea, resolving toxin and dissipating binds.
Modern pharmacology study shows that it is commonly used Chinese
medicine in treatment of anti-cancer, boosting immunity,
anti-hypertensive, anti-oxidation, anti-inflammatory ( Liu et al., 2010). The details were shown in Fig. 3,
four ingredients in CS including Coixol, Coixenolide, Oleic acid and
Triglyceride have suitable OB values. Although some of them exhibit low
DL values, they were still included for further targeting, since they
are the active ingredients in CS.
3.3.5. LJ
L. japonica
Thunb. (family Caprifoliaceae) are perennial arching shrubs or twining
vines that are commonly found as dried buds or early-opened flowers. It
is commonly used in traditional Chinese medicine for the treatment of
various diseases, including arthritis, diabetes mellitus, fever,
infections, sores, and swelling. Pharmacological studies have shown that
extracts of LJ flower buds have a broad spectrum of biological
activity, including antibacterial, anti-inflammatory, antioxidant,
antiangiogenic, antipyretic, antiviral, and hepatoprotective effects ( Qian et al., 2007).
It has nine candidate ingredients in which over half show proper OB
values (>30%). Interestingly, Caffeic acid and Ferulic acid, the
representative active ingredients in LJ ( She and Zhu, 2008),
exhibit low DL values, although their OB values meet the standards.
They show potent antisepsis and anti-inflammatory effects ( Ma et al., 2010, Zhang et al., 2014 and Tang et al., 2014)
and could be selected for further evaluation. Based on all these
considerations, it was reasonable to believe that five could be listed
as potential active ingredients.
3.3.6. SG
SG,
belonging to the Smilacaceae family, Smilax genus, is described to be
effective in xeransis, detoxification, and easing joint movement in
traditional Chinese medical literature, which include the Compendium of
Materia Medica and the State Pharmacopoeia of the People’s Republic of
China. Extract of SG has also been studied for multiple pharmacologic
activities, such as immunomodulatory (Jiang and Xu, 2003), anti-inflammatory (Jiang et al., 1997).
It has nine valid ingredients in which almost all of them have
appropriate OB and DL values. Those ingredients that meet the selection
criteria are selected for further study, including Quercetin, Astilbin,
Taxifolin, Epicatechin, Oxyresveratrol, Kaempferol, Resveratrol,
Dioscin. Notably, Oxyresveratrol has significantly high OB value
(109.29%), which means it is more easily to be absorbed into our bodies.
Another active ingredient Resveratrol, exhibits low OB value (19.07%).
However, as the homolog of Oxyresveratrol, it is rather effective for
anti-inflammation (Chen et al., 2011) and especially benefit for lowering UA by reducing the expression of UA synthetase XOD or transporters such as OAT1, GLUT9 (Shi et al., 2012). Therefore, it was added as potential ingredients for further analysis.
3.4. Network construction and analysis
A
drug-target network is defined as a bipartite network for the
drug-target associations consisting of two disjoint sets of nodes. We
constructed the networks to find out the active ingredients in MSW, as
well as to understand rationality of herb combinations of MSW.
3.4.1. The core potential ingredients-target-pathway network
Based
on the cI-cT network which illustrates the relationships between
candidate ingredients and targets, the potential ingredient-target
network (pI-pT) was generated by connecting potential ingredients and
corresponding targets. In order to clearly distinguish the relationship
between ingredients and their targets, we constructed a core potential
ingredients-target-pathway network (Fig. 3),
that depicts the relationship between 30 core ingredients and 25
corresponding targets through related pathways. In this study, we
selected those whose degree values are more than four as the core
ingredients from the pI-pT network for further research.
Furthermore,
multiple gouty related pathways were listed as follows to reveal
possible mechanism involved in gouty treatment. A central feature of
gout is inflammation, Table 3
includes several possible pathways related to inflammatory signaling,
in which the most important one is the Toll-like receptor (TLR)
signaling pathway. Some other pathways, such as NF-kappa B (NF-ƙB), TNF
signaling pathways, have been known to be associated with gouty
treatment. Another prominent feature of gout is enhanced uric acid,
which implies that the synthesis and excretion of UA pathways are also
associated with the function of lowing UA.
No. Target Degree Description Possible pathway G5 PTGS2 23 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) NF-kappa B, TNF signaling pathways G56 TNF 23 Tumor necrosis factor Toll-like receptor, NF-kappa B, mTOR, MAPK, TNF signaling pathways G57 IL6 22 Interleukin 6 Toll-like receptor, P13K-Akt, TNF signaling pathways G46 MAPK1 17 Mitogen-activated protein kinase 1 Toll-like receptor, MAPK, mTOR, P13K-Akt, TNF signaling pathways G58 IL1B 16 Interleukin 1, beta Toll-like receptor, MAPK, NF-kappa B, TNF signaling pathways G8 BAX 11 BCL2-associated X protein p53 Signaling pathway G10 BCL2 11 B-cell CLL/lymphoma 2 NF-kappa B, P13K-Akt signaling pathways G47 MAPK3 10 Mitogen-activated protein kinase 3 MAPK signaling pathway G4 PIKC3G 9 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma P13K-Akt signaling pathway G31 HSP90AA1 9 Heat shock protein 90 kDa alpha (cytosolic), class A member 1 P13K-Akt signaling pathway G50 MAPK14 9 Mitogen-activated protein kinase 14 MAPK signaling pathway G52 IL8 9 Interleukin 8 Toll-like receptor, NF-kappa B signaling pathways Rheumatoid arthritis G6 MTOR 8 Mechanistic target of rapamycin (serine/threonine kinase) mTOR, P13K-Akt signaling pathways G2 PIK3CA 6 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha P13K-Akt signaling pathway G3 PIK3CB 6 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta P13K-Akt signaling pathway G23 PPARA 5 Peroxisome proliferator-activated receptor alpha PPAR signaling pathway G7 RPS6KB1 4 Ribosomal protein S6 kinase, 70 kDa, polypeptide 1 MAPK, P13K-Akt, mTOR signaling pathways G15 TGFB1 4 Transforming growth factor, beta 1 MAPK signaling pathway Rheumatoid arthritis G37 JAK2 4 Janus kinase 2 P13K-Akt signaling pathway G55 IL10 4 Interleukin 10 JAK-STAT signaling pathway G59 IL4 4 Interleukin 4 P13K-Akt signaling pathway P1 XOD 17 Xanthine oxidase Uric acid synthesis P3 OAT1 7 Solute carrier family 22 (organic anion transporter), member 6 Uric acid excretion P5 GLUT9 5 Solute carrier family 2 (facilitated glucose transporter), member 9 Uric acid excretion P2 URAT1 4 Solute carrier family 22 (organic anion/urate transporter), member 12 Uric acid excretion - Core targets are those whose degree values are more than four from the potential ingredient-target network. The possible pathways are collected from KEGG database.
As listed in Table 3,
the expression of IL-6, TNF, PTGS2, one of the most core targets with
highest degrees, could be inhibit by more than 20 distinct ingredients
in this formula via TLR, NF-ƙB or mTOR signaling pathways. IL-1β, the
major mediator that induces acute gouty arthritis (Schlesinger et al., 2012 and Terkeltaub et al., 2013),
is also suppressed by 16 ingredients through TLR, NF-ƙB and MAPK
signaling pathways. Moreover, XOD, a key enzyme to generate UA as well
as the decisive factor for regulating generation of UA, is intimately
connected with the potential ingredients. To be specific, over half
potential ingredients are able to inhibit the expression of XOD. It
indicates that XOD inhibitory activity might be one of anti-gout
mechanisms, and ingredients inhibiting the expression of XOD are
effective in reducing UA for gouty treatment. Besides, OAT1 is a
potential molecular component in the first step of renal urate
secretion, which can mediate the active uptake of organic anions and
controls the final exit into the urine via ATP-powered transporters and
bidirectional exchangers (EI-Sheikh et al., 2008). More than five potential ingredients in MSW could increase renal OAT1 expression, resulting in the increased urate secretion.
In
conclusion, these anti-inflammatory and UA-lowing properties of MSW
account, at least in most part, for its pharmacological efficacy against
gouty diseases. However, their detailed mechanism involved and clinical
significance activity require further study.
3.4.2. Explore the rationality of herb combinations of MSW
The core drug (EM) is descried to treat acute gout through clearing heat and eliminating dampness in terms of TCM (Kong et al., 2004).
Basic prescription (SM), which is described in a famous TCM monograph
Danxi Xinfa (comprehensive medical book), has been used for hundreds of
years in Chinese medicine for treating gouty arthritis with eliminating
dampness, clearing heat and promoting blood circulation (Hua et al., 2012 and Shi et al., 2013). Therefore, the network (Fig. 4) was displayed to reveal rationality of herb combinations between ingredients and corresponding targets.
EM
has both anti-inflammatory and uricosuric effects through hitting most
core targets including inflammatory cytokines such as IL-6, TNF-α,
COX-2, IL-1β, and UA synthetase XOD or several transporters URAT1, OAT1,
OAT3, ABCG2. SM is able to stimulate almost all the core targets, owing
to the additional herbs AB and CS, which could hit more inflammatory
cytokines and UA transporters, such as IL-10, TGFB1, IL-4, PPARA, GLUT9,
hUAT and LEP. Mostly important, MSW, which is derived from SM, could
activate all the inflammatory cytokines and UA-lowing targets. The
results show that EM plays a key role, while SM plays an important role
in MSW for the treatment of acute gout.
According
to the nature of Chinese herbs, most of inflammatory cytokines such as
IL-6, TNF-α, IL-1β, MAPK1, could be hit by those ingredients such as
Berberine, Syringing, Luteoline, Chlorogenic acid, which are just
important ingredients in PC and LJ. As antipyretics, PC and LJ play the
major role of clearing heat on anti-inflammation for gouty treatment.
While AR, CS and SG, used for eliminating dampness in TCM, could reduce
UA levels through targeting UA synthetase and transporters. Equally
important, AB, as a hemorheologic agent, promotes blood circulation and
could be an adjuvant therapy for gouty diseases. These results
preliminarily show that the nature of TCM is consistent with the
clinical therapeutic effects.
3.5. Experimental validation for anti-gout effects of ingredients in MSW
Berberine,
Astilbin, Chlorogenic Acid, Ferulic acid and Caffeic acid are the
representative ingredients PC, LJ and SG, which actually play a crucial
role in clearing heat on anti-inflammation. Besides, they are highly
connected with the core targets. Therefore, they were selected to
investigate therapeutic effects for treating acute gouty arthritis in
MSU-induced HUVECs.
3.5.1. Effect on cell viability stimulated by MSU
To
determine whether ingredients in MSW have protective effects on HUVECs
damaged by MSU crystals, cell viability was assessed using MTT assay.
Results (Fig. 5)
confirmed that all ingredients exhibit significant protective effect on
HUVECs compared with the model. To be specific, compared with the
model, effect of Berberine has a significant difference (p<0.05) with dose-effect relationship. While effect of Astilbin exhibits an extremely significant difference (p<0.01)
with does-effect relationship varying from low to middle dosage. The
same as Caffeic Acid, Ferulic Acid and Chlorogenic Acid (p<0.01), and Chlorogenic Acid shows a dose-effect relationship.
3.5.2. Effect on expression of ICAM-1 stimulated by MSU
As depicted in Fig. 6,
the expression level of ICAM-1 in HUVECs was a lot in untreated HUVECs
and was augmented by stimulation with MSU crystals (100 μg/ml) for 24 h.
Treatment of HUVECs with Berberine, Astilbin, Chlorogenic Acid, Caffeic
Acid, Ferulic Acid (2.5 μg/ml) and Indomethacin (2.5 μg/ml) for 24 h
blocked the increase of ICAM-1 expression induced by MSU crystals to
different extents compared with the model.
In
general, we could draw such a conclusion that Berberine, Astilbin,
Chlorogenic Acid, Caffeic Acid and Ferulic Acid are the effective
ingredients for acute Gout. This study has also demonstrated for the
first time that ingredients in MSW exhibit significant does-dependent
inhibitory effects in experimental gouty arthritis models in vivo induced by MSU crystals.
4. Discussions
Gout
is a type of inflammatory arthritis induced by the deposition of MSU
crystals in the tissues or a joint, and is a polygenetic disorder
induced by the increase of UA synthesis or decrease of excretion through
UA synthetas XOD and transporters, accompanying with inflammation
caused by inflammatory cytokines (Sha and He, 2009 and Tong et al., 2013).
Given
the intensity of inflammatory reactions characterizing the acute
attack, NSAIDs and Colchicine, as appropriate first-line agents in
clinical use (Neogi, 2010), could stimulate several targets such as COX-2, MAPK1, in a” single-target” paradigm (Yuan et al., 2000 and Ben-Chetrit et al., 2005). However, Colchicine’s toxicity was wildly reported (Finkelstein et al., 2010). NSAIDs also present some adverse effects such as gastrointestinal toxicity, renal toxicity and gastrointestinal bleeding (Sabina et al., 2011).
Besides, Benzbromarone, an uricosuric agent, has been used for more
than 25 years to control hyperuricemia by inhibiting the main renal UA
transporter URAT1, which could suppress the reabsorption of UA (Kunishima et al., 2007). It was withdrawn from the European market due to the risk of severe hepatotoxicity (Kumar et al., 2005). Allopurinol, as a frequently used XOD inhibitor in clinical use (Horiuchi et al., 2000 and Chen et al., 2005), could cause severe hypersensitivity and was restricted in patients with renal insufficiency (Hande et al., 1984).
Predicted
by network pharmacology, many ingredients in MSW are able to stimulate
MAPK1, COX-2, XOD, URAT1 through inflammatory and synthesis or secretion
of UA pathways, which are just the targets of classical anti-gout
drugs. Besides, those genes such as IL-8, TNF-α, IL-1β, OAT1, GLUI9 (Rott and Agudelo, 2003, Lioté, 2003 and Tausche et al., 2004),
that may induce the occurrence of gout, could also be targeted by
various ingredients in MSW. Experimental results show that MSW could
play an important role in terms of anti-inflammation by inhibiting
expression of ICAM-1, preventing neutrophil infiltration and apoptosis
of HUVECs (Shi et al., 2013) and significantly reducing serum UA levels, together with decreasing liver XOD activity and IL-1β, IL-6 levels (Zeng et al., 2014).
Thus, we consider that MSW may be effective in treating gouty diseases
by cooperation of multiple targets and multiple pathways.
The
study also indicates the rationality of herb combinations of EM and SM
in MSW for gouty treatment. To be specific, EM is a classical formula
used for clearing heat and eliminating dampness to treat gouty diseases
through stimulating most core targets such as XOD, URAT1, IL-6, TNF-α,
which are consistent with those collected from published literatures (Kong et al., 2004 and Kao and Dong, 2013). As a classic formula derived from EM, SM is commonly used to treat gout and hyperuricemia in clinical (Hu et al., 2010 and Hua et al., 2012),
eliminating dampness, clearing heat and promoting blood circulation in
terms of TCM through targeting UA synthetase, transporters and
inflammatory cytokines. Literatures also suggest that SM could suppress
inflammation and inhibit the release of IL-1β, TNF-α (Xu et al., 2013 and Liu et al., 2014).
Besides, it could also significantly inhibit XOD activities in serum
and liver, and reverse oxonate-induced alterations in renal URAT1,
GLUT9, OAT1 mRNA and protein levels, resulting in the enhancement of
renal urate excretion (Hua et al., 2012),
which are consistent with those predicted from the gouty network.
Mostly important, MSW, which develops based on TCM theory, clinical
research, and pharmacodynamic findings (Yin and Si, 2006),
is prepared with two additional agents on the basis of SM and does a
more comprehensive and synergetic effect than EM and SM on gouty
diseases.
Acute
gouty arthritis is caused by MSU crystals in and around the joints,
which causes acute inflammation that manifests as intense pain,
swelling, and reddening of the skin (Chia et al., 2008).
TCM believes that a formula with clearing heat, eliminating dampness
and promoting blood circulation is useful for treating acute gout.
Chemical ingredients in six herbs (AR, PC, AB, CS, LJ and SG) of MSW
were compared based on those important drug-associated descriptors
including MW, ALogP, Hdon, Hacc, OB and DL. Results from herbal
ingredients comparisons (Table 1) and networks (Fig. 4)
suggested that AR and CS have similar chemical properties on most of
the descriptors except ALogP. Both of them are used for eliminating
dampness by targeting most UA synthetase and transporters through
synthesis or excretion of UA. Besides, PC and LJ, which are similar with
each other on those descriptors including MW, ALogP, Hdon, Hacc and OB,
play the role of clearing heat on anti-inflammation by targeting many
inflammatory cytokines such as TNF-α, IL-6, IL-1β via TLR, NF-ƙB and
other signaling pathways. While SG, having somewhat similar properties
with AR and PC, is useful in both clearing heat and eliminating
dampness. AB, a hemorheologic agent, which is different from others,
could promote blood circulation by activating inflammatory cytokines and
UA-lowing targets. The study based on network pharmacology confirms
herb combinations of MSW including heat-clearing, dampness-eliminating
and blood-activating drugs is rational for gouty treatment. Experimental
results first demonstrated that core ingredients in MSW could protect
HUVECs by reducing cell apoptosis and inhibiting expression of ICAM-1 in
MSU-induced HUVECs for anti-acute gout. Besides, these ingredients such
as Quercetin, Resveratrol, Palmitic acid, Astilbin, down-regulated
hepatic XOD and enhanced renal urate excretion in hyperuricemic mice by
up-regulating OAT1 and down-regulating URAT1 and GLUT9 mRNA and protein
levels in the kidney (Wang and Sweet, 2012, Shi et al., 2012 and Hu et al., 2012).
Researches confirm that various ingredients in MSW are effective for
gouty treatment by targeting inflammatory cytokines and UA synthetas or
transporters through different related pathways, which indicates a whole
regulation with the paradigm of “multi-ingredient, multi-target,
multi-pathway”.
5. Conclusion
Combination
therapy is a fundamental principle of TCM, which is developed for the
purpose of maximizing the efficacy and minimizing the adverse effects or
toxicity (Sucher, 2013). An herbal formula is not a simple quantitative addition of different herbs (Jia et al., 2004),
instead, all the herbs of a defined prescription should correspond
exactly to the related diseases, showing a significantly better effect
than the constituent herb used alone (Scholey and Kennedy, 2002).
We integrate our previous methods into a TCM network pharmacology
platform to illustrate network connections between multiple targets of
ingredients in herbal formula and multiple targets of a specific disease
such as gout. Our study has successfully predicted the active
ingredients in MSW and uncovered the rationality of herb combinations of
MSW. Therefore, such a network pharmacology strategy and platform is
expected to make the systematical study of herbal formulae achievable
and make the TCM drug discovery predictable.
Conflict of interest
All authors have no financial or scientific conflict of interest with regard to the research described in this manuscript.
Acknowledgement
This study is supported by Natural Science Foundation of Jiangsu Province, China (no. BK2002033), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China and Research Foundation of Nanjing University of Traditional Chinese Medicine, China.
References
- Ahmad et al., 2008
- Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout
- J. Ethnopharmacol., 117 (2008), pp. 478–482
- | | |
- An et al., 2010
- Reparatory and preventive effects of oriental herb extract mixture (OHEM) on hyperuricemia and gout
- Food Sci. Biotechnol., 19 (2010), pp. 517–524
- Ben-Chetrit et al., 2005
- Mechanism of the anti-inflammatory effect of colchicine in rheumatic diseases: a possible new outlook through microarray analysis
- Rheumatology (Oxford, England), 45 (2005), pp. 274–282
- Borstad et al., 2004
- Colchicine for prophylaxis of acuteflares when initiating allopurinol for chronic gouty arthritis
- J. Rheumatol., 31 (2004), pp. 2429–2432
- |
- Chen et al., 2005
- Allopurinol-induced severe hypersensitivity with acute renal failure
- Kaohsiung J. Med. Sci., 21 (2005), pp. 228–232
- | | |
- Chen et al., 2011
- Anti-hyperuricemic and nephroprotective effects of Smilax china L.
- J. Ethnopharmacol., 135 (2011), pp. 399–405
- | | |
- Chia et al., 2008
- Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicines
- Br. J. Pharmacol., 153 (2008), pp. 1288–1295
- |
- De Martin et al., 1993
- Cytokine-inducible expression in endothelial cells of an I kappa B alpha like gene is regulated by NF kappa B
- EMBO J., 12 (1993), pp. 2773–2779
- |
- Denko and Whitehouse, 1976
- Experimental inflammation induced by naturally occurring microcrystalline salts
- J. Rheumatol., 3 (1976), pp. 54–62
- |
- Doherty, 2009
- New insights into the epidemiology of gout
- Rheumatology (Oxford), 48 (Suppl. 2) (2009) (ii2-8)
- EI-Sheikh et al., 2008
- Mechanisms of renal anionic drug transport
- Eur. J. Pharmacol., 585 (2008), pp. 245–255
- Fan et al., 2014
- Betaine supplementation protects against high-fructose-induced renal injury in rats
- J. Nutr. Biochem., 25 (2014), pp. 353–362
- | | |
- Finkelstein et al., 2010
- Colchicine poisoning: the dark side of an ancient drug
- Clin. Toxicol. (Philadelphia, PA), 48 (2010), pp. 407–414
- | |
- Gong et al., 2014
- Hepatoprotective effects of syringin on fulminant hepatic failure induced by d-galactosamine and lipopolysaccharide in mice
- J. Appl. Toxicol., 34 (2014), pp. 265–271
- | |
- Hamosh et al., 2005
- Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
- Nucleic Acids Res., 33 (2005), pp. 514–517
- Hande et al., 1984
- Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency
- Am. J. Med., 76 (1984), pp. 47–56
- | | |
- Horiuchi et al., 2000
- Allopurinol induces renal toxicity by impairing pyrimidine metabolism in mice
- Life Sci., 66 (2000), pp. 2051–2070
- | | |
- Hu et al., 2010
- Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice
- J. Ethnopharmacol., 128 (2010), pp. 685–692
- | | |
- Hu et al., 2012
- Quercetin regulates organic ion transporter and uromodulin expression and improves renal function in hyperuricemic mice
- Eur. J. Nutr., 51 (2012), pp. 593–606
- | |
- Hu et al., 2009
- Pulsatilla decoction and its active ingredients inhibit secretion of NO, ET-1, TNF-alpha, and IL-1 alpha in LPS-induced rat intestinal microvascular endothelial cells
- Cell Biochem. Funct., 27 (2009), pp. 284–288
- | |
- Hua et al., 2012
- Antihyperuricemic and nephroprotective effects of Modified Simiao decoction in hyperuricemic mice
- J. Ethnopharmacol., 142 (2012), pp. 248–252
- | | |
- Inokuchi et al., 2006
- Plasma interleukin (IL)-18 (interferon-γ-inducing factor) and other inflammatory cytokines in patients with gouty arthritis and monosodium urate monohydrate crystal-induced secretion of IL-18
- Cytokine, 33 (2006), pp. 21–27
- | | |
- Jia et al., 2004
- The rediscovery of ancient Chinese herbal formulas
- Phytother. Res., 18 (2004), pp. 681–686
- | |
- Jia et al., 2009
- Mechanisms of drug combinations: interaction and network perspectives
- Nat. Rev. Drug Discovery, 8 (2009), pp. 111–128
- | |
- Jiang et al., 1997
- Anti-inflammatory activity of the aqueous extract from Rhizoma Smilacis Glabrae
- Pharmacol. Res., 36 (1997), pp. 309–314
- | | |
- Jiang and Xu, 2003
- Immunomodulatory activity of the aqueous extract from rhizome of Smilax glabra in the later phase of adjuvant-induced arthritis in rats
- J. Ethnopharmacol., 85 (2003), pp. 53–59
- | | |
- Kao and Dong, 2013
- Antiinflammatory effect of Ermiao powder with different combinations on adjuvant arthritis rats
- Acta Chin. Med. Pharmacol., 41 (2013), pp. 107–109
- Keith et al., 2005
- Multicomponent therapeutics for networked systems
- Nat. Rev. Drug Discovery, 4 (2005), pp. 71–78
- | |
- Kong et al., 2004
- A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice
- J. Ethnopharmacol., 93 (2004), pp. 325–330
- | | |
- Koonrungsesomboon et al., 2014
- Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC
- Asian Pac. J. Trop. Med., 7 (2014), pp. 421–428
- | |
- Kumar et al., 2005
- Benzbromarone therapy in management of refractory gout
- N.Z. Med. J., 118 (2005), p. U1528
- Kunishima et al., 2007
- Activating effect of benzbromarone, a uricosuric drug, on peroxisome proliferator-activated receptors
- PPAR Res., 2007 (2007), p. 36092
- Levinson, 2010
- Cancer therapy reform
- Science, 328 (2010), p. 137
- | |
- Li and Zhang, 2013
- Traditional Chinese medicine network pharmacology: theory, methodology and application
- Chin. J. Nat. Med., 11 (2013), pp. 110–120
- | | | |
- Lipinski et al., 1997
- Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
- Adv. Drug Delivery Rev., 23 (1997), pp. 3–25
- | | |
- Lioté, 2003
- Hyperuricemia and gout
- Curr. Rheumatol. Rep., 5 (2003), pp. 227–234
- | |
- Li et al., 2007
- Simultaneous determination of main phytoecdysones and triterpenoids in radix achyranthis bidentatae by high-performance liquid chromatography with diode array-evaporative light scattering detectors and mass spectrometry
- Anal. Chim. Acta, 596 (2007), pp. 264–272
- | | |
- Liu et al., 2014
- Effects of Modified Simiao decoction on IL-1 beta and TNF alpha secretion in monocytic THP-1 cells with monosodium urate crystals-induced inflammation
- Evid. Based Complement. Altern. Med.: eCAM (2014), p. 406816
- Liu et al., 2010
- Study progress on the pharmacological functions of Coix seed
- J. Anhui Agric. Sci., 38 (2010), pp. 10685–10686
- Ma et al., 2010
- Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells
- Biol. Pharm. Bull., 33 (2010), pp. 752–758
- | |
- Miao et al., 2008
- Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China
- J. Rheumatol., 35 (2008), pp. 1859–1864
- |
- Neogi, 2010
- Interleukin-1 antagonism in acute gout: is targeting a single cytokine the answer?
- Arthritis Rheum., 62 (2010), pp. 2845–2849
- | |
- Oskoueian et al., 2011
- Bioactive compounds, antioxidant, xanthine oxidase inhibitory, tyrosinase inhibitory and anti-inflammatory activities of selected agro-industrial by-products
- Int. J. Mol. Sci., 12 (2011), pp. 8610–8625
- | |
- Richette and Bardin, 2010
- Gout
- Lancet, 375 (2010), pp. 318–328
- | | |
- Rott and Agudelo, 2003
- Gout
- J. Am. Med. Assoc., 289 (2003), pp. 2857–2860
- | |
- Sabina et al., 2011
- A role of piperine on monosodium urate crystal-induced inflammation—an experimental model of gouty arthritis
- Inflammation, 34 (2011), pp. 184–192
- | |
- Schadt et al., 2009
- A network view of disease and compound screening
- Nat. Rev. Drug Discovery, 8 (2009), pp. 286–295
- | |
- Schlesinger et al., 2012
- Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions
- Ann. Rheum. Dis., 71 (2012), pp. 1839–1848
- | |
- Scholey and Kennedy, 2002
- Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand
- Hum. Psychopharmacol.: Clin. Exp., 17 (2002), pp. 35–44
- | |
- Qian et al., 2007
- Simultaneous qualitation and quantification of thirteen bioactive compounds in Flos lonicerae by high-performance liquid chromatography with diode array detector and mass spectrometry
- Chem. Pharm. Bull. (Tokyo), 55 (2007), pp. 1073–1076
- | |
- Sha and He, 2009
- The research progress on gout related factors and its susceptibility genes
- Chin. J. Public Health, 25 (2009), pp. 629–631
- Shannon et al., 2003
- Cytoscape: a software environment for integrated models of biomolecular interaction networks
- Genome Res., 13 (2003), pp. 2498–2504
- | |
- She and Zhu, 2008
- Advances in studies on chemical constituents of Lonicera
- Strait Pharm. J., 20 (2008), pp. 1–7
- Shen et al., 2011
- Studies on chemical constituents and pharmaceutics activity of Achyranthes bidentata Bl
- Strait Pharm. J., 23 (2011), pp. 1–6
- | |
- Shi et al., 2013
- Suppressive effect of modified Simiaowan on experimental gouty arthritis: an in vivo and in vitro study
- J. Ethnopharmacol., 150 (2013), pp. 1038–1044
- | | |
- Shi et al., 2012
- Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice
- J. Ethnopharmacol., 143 (2012), pp. 896–904
- | | |
- Shi et al., 2012
- Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice
- Mol. Nutr. Food Res., 56 (2012), pp. 1433–1444
- | |
- Sucher, 2013
- The application of Chinese medicine to novel drug discovery
- Expert Opin. Drug Discovery, 8 (2013), pp. 21–34
- | |
- Tang et al., 2009
- Sample preparation for analyzing traditional Chinese medicines
- TrAC, Trends Anal. Chem., 28 (2009), pp. 1253–1262
- | | |
- Tang et al., 2014
- Combination use of ferulic acid, ligustrazine and tetrahydropalmatine inhibits the growth of ectopic endometrial tissue: a multi-target therapy for endometriosis rats
- J. Ethnopharmacol., 151 (2014), pp. 1218–1225
- | | |
- Tausche et al., 2004
- Severe gouty arthritis refractory to anti-inflammatory drugs: treatment with anti-tumor necrosis factor α as a new therapeuticoption
- Ann. Rheum. Dis., 63 (2004), pp. 1351–1352
- | |
- Terkeltaub et al., 2013
- Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator
- Arthritis Res. Ther., 15 (2013), p. R25
- Tong et al., 2013
- Progress in primary hyperuricemia and gout-related genes
- Guide China Med., 11 (2013), pp. 88–89
- Wang and Sweet, 2012
- Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11)
- Biochem. Pharmacol., 84 (2012), pp. 1088–1095
- | | |
- Welde, 1992
- A primary culture system of adult rat heart cells for the evaluation of cocaine toxicity
- Toxicology, 72 (1992), pp. 175–187
- Xu et al., 2012
- A novel chemometric method for prediction of human oral bioavailability
- Int. J. Mol. Sci., 13 (2012), pp. 6964–6982
- | |
- Xu et al., 2013
- Treatment with SiMiaoFang, an anti-arthritis Chinese herbal formula, inhibits cartilage matrix degradation in osteoarthritis rat model
- Rejuvenation Res., 16 (2013), pp. 364–376
- | | |
- Yen, 1994
- The Pharmacology of Chinese Herbs
- (first ed.)Chin-Yin Publishing, Taipai, Taiwan (1994)
- Yin and Si, 2006
- Ideas and methods of screening jiaweisimaowan for treatment of acute gouty arthritis and principles of diagnosis
- World Sci. Technol./Mod. Tradit. Chin. Med., 6 (2006), pp. 27–30
- |
- Yuan et al., 2000
- Transcriptional regulation of cyclooxygenase-2 gene expression: novel effects of nonsteroidal anti-inflammatory drugs
- Cancer Res., 60 (2000), pp. 1084–1091
- |
- Zeng et al., 2014
- Pharmacological analysis of Modified Simiao powder on gouty arthritis and hyperuricemia
- Chin. J. Exp. Tradit. Med. Formul., 20 (2014), pp. 129–133
- Zhang et al., 2012
- Advances in study on chemical constituents and pharmacological activities of Phellodendron Chinese Schineid. And Phellodendron amurese Rupr.
- J. Shenyang Pharm. Univ., 29 (2012), pp. 812–821
- Zhang et al., 2014
- Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-alpha), IL-6 and IL-1beta levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice
- Biol. Pharm. Bull., 37 (2014), pp. 347–354
- | |
- Zhu et al., 2011
- Prevalence of gout and hyperuricemia in the US general population
- Arthritis Rheum., 63 (2011), pp. 3136–3141
- | |
Copyright © 2015 The authors. Published by Elsevier Ireland Ltd.