Volume 71, August 2015, Pages 1–9
Rosemary extract ameliorates cadmium-induced histological changes and oxidative damage in the liver of albino rat
- Open Access funded by The Egyptian German Society for Zoology
- Under a Creative Commons license
Abstract
The
oxidative damage and histological changes of liver of rats exposed to
cadmium and the ameliorative effect of rosemary extract against cadmium
hepatotoxicity were studied. The results showed that exposure to Cd
(30 mg/kg b.w., 5 consecutive days/week for 8 weeks) led to an increase
in the MDA levels and a decrease in activity of SOD, CAT and the
concentration of GSH versus controls. In contrast, administration of
rosemary aqueous extract restored the changes in these parameters to
nearly the normal levels. Treating animals with Cd led to different
histopathological changes such as loss of the normal structure of
hepatic cells, blood congestion, leukocytic infiltrations and fatty
degeneration. Ultra structure results revealed abnormality in the
nucleus, swelling of mitochondria, degeneration of endoplasmic
reticulum, and increase of lysosomes and appearance of fat droplets. On
the other hand, animals treated with Cd and rosemary showed an
improvement in these changes and the tissue appears with normal
structures. The results suggested that the ameliorative effect of
rosemary extract may be due to its antioxidant properties in combating
free radical-induced oxidative stress and tissue injury resulting from
cadmium chloride.
Keywords
- Liver;
- Cadmium chloride;
- Histology;
- Oxidative stress
Introduction
In recent years the concentration of heavy metals increased in the environment (Valverde et al., 2000).
Industries caused an increase in concentration of metals, which cause
toxic effects in the environment, the harmful materials are found in
every area of modern consumerism and advertently or inadvertently allow
more and more exposure (Singh et al., 2010).
Among the important heavy metals is cadmium, which is released into the
environment by mining and smelting operations (primarily zinc, lead,
copper, and cadmium (Zhang et al., 2012)), fuel combustion (Chen et al., 2014), incineration of municipal waste (Zhang et al., 2001), and sewage sludge (Edwards et al., 2013), and the application of phosphate fertilizer (Gill et al., 2013). Humans can get Cd from crops such as rice, potato, root and leaf of vegetables (Fan et al., 2009), and tobacco (García-Esquinas et al., 2014), soil (Guo and Zhou, 2006), and fruits and oily seeds (Schwarz et al., 2014). It may be also found in animal milk (Gougoulias et al., 2014). Cadmium is a cytotoxic, carcinogenic, and mutagenic industrial product or by product (Du et al., 2014).
It causes hepatotoxicity upon acute administration. Features of
cadmium-induced acute hepatotoxicity encompass necrosis, apoptosis,
peliosis and inflammatory infiltration (Kyriakou et al., 2013). Cadmium was also found to generate reactive oxygen species (ROS) that cause apoptosis (Wang et al., 2014).
Free
radical cause damage which lead to peroxidation to biomembranes and DNA
which lead to tissue damage, as a result caused many diseases.
Antioxidants depart the effects of the free radical and may prevent the
body from several diseases (Gupta and Sharma, 2006).
Antioxidants known as radical scavengers, cause inhibition of lipid
peroxidation and other free radicals mediate the process, and protect
the human from several diseases resulting from the reaction of the
radical. Many substances act as antioxidant such as flavonoids that are
scavenging radicals (Czinner et al., 2001).
Natural
herbs are widely consumed by humans on a daily basis, these natural
products have many biologic and pharmacologic properties (Hosseinimehr, 2014). Rosemary (Rosmarinus officinalis)
and its constituents especially caffeic acid derivatives such as
rosmarinic acid have a therapeutic potential in prevention of bronchial
asthma, spasmogenic disorders, peptic ulcer, inflammatory diseases,
hepatotoxicity, atherosclerosis, ischemic heart disease, cataract,
cancer and poor sperm motility ( Al-Sereiti et al., 1999).
Results of many experiments showed that rosemary essential oil had
antimicrobial, antioxidant, anti-carcinogenic, and cognition-improving
effects ( Faixov and Faix, 2008).
The antioxidant activity of rosemary extract can be attributed mainly to two components, carnosic acid and carnosol (Kadri et al., 2011 and Machado et al., 2013).
Extracts of rosemary can have both flavoring and antioxidative
properties. In many cases both functions are used, but some extracts are
to be used primarily for their antioxidant properties. In such cases
the processing of the rosemary can be optimized to enhance the
antioxidative function and to reduce that of the flavoring, antioxidants
are required in foods to prevent oxidation of oils and production of
off-flavors (Aguilar et al., 2008).
The present work aims to explore the possible ameliorative effect of
rosemary on cadmium chloride induced toxicity on liver of albino rats.
Materials and methods
Cadmium chloride (CdCl2)
It
is a chemical substance obtained from Raheja Centre, Mumbai, India.
Cadmium chloride was dissolved in distilled water and was administrated
orally to rats at a dose level 30 mg/kg b.w. for 5 consecutive days per
week for 8 weeks according to Ohta et al. (2000).
Preparation of rosemary extract
Rosemary (R.officinalis)
was collected from greenhouse in Faculty of Science, Menoufia
University, Shebin El-Kom, Egypt. Rosemary extract was prepared
according to Dorman et al. (2003).
50 g of the powdered herb was dissolved in 500 ml distilled water in a
quick fit round bottom flask connected to a hydrodistillation apparatus.
It was then left to slowly boil for 120 min. The water in flask was
removed and replaced by another 300 ml of fresh distilled water and
boiled for another 60 min, then filtered. The filtrate was subjected to
lyophilization process by a freeze dryer under pressure 0.1–0.5 mbar and
temperature −35 to −41 °C. The dry extract was stored at 4 °C until
used.
Animals and treatments
Male albino rats (Rattus norvegicus)
weighing 120 ± 5 g were kept in standard laboratory condition for at
least one week before initiation of the experiments, being maintained on
standard rodent diet, and were given free access to food and water. The
animals were housed in especially designed plastic rodent cages in
animal house in Faculty of Science, Menoufia University, Shebin El-Kom,
Egypt. This study and all procedures were approved by the Animal Care
and Bioethics of the Egyptian Committee, and the animal work was done at
Faculty of Science, Menoufia University. The animals were divided into
four groups:
- Group 1: Animals served as the control group.
- Group 2: Rats given rosemary orally at a dose of 220 mg/kg b.w. for 5 consecutive days per week for 8 weeks ( Dorman et al., 2003).
- Group 3: Animals were orally administrated with CdCl2 at a dose level 30 mg/kg b.w. for 5 consecutive days per week for 8 weeks according to Ohta et al. (2000).
- Group 4: Rats administrated orally CdCl2 and rosemary extract for 5 days per week for 8 weeks.
Light and electron microscopic examination
The
treated animals and their controls were anesthetized and dissected
after 4 and 8 weeks of treatment. Livers were removed and fixed in 10%
neutral formalin for 24 h, washed in running tap water for 24 h, and
dehydrated in ascending grades of ethanol and two changes, cleared in
two changes of xylene and embedded in paraplast and sections of 5
micrometer thickness were cut. Slides were stained with haematoxylin and
eosin for histological examination. For ultrastructural examination
very small pieces of liver were fixed in glutaraldehyde then rinsed in
phosphate buffer, post fixed in buffered solution of 1% osmium tetroxide
for 3 h at 4 °C, then processed with the standard steps: dehydration,
infiltration, embedding and polymerization. The ultrathin sections were
examined by using JEOL electron microscope (Karnovsky, 1965).
Biochemical assays
For
biochemical study, livers were removed and homogenized in normal
mammalian saline (0.9% NaCl) solution (1 mg tissue in 10 ml saline),
using ultrasonic homogenizer. Tissue homogenate was kept in −20 °C deep
freeze for one week to allow enzymes to liberate in the homogenate.
Samples were centrifuged by cooling centrifuge and the supernatant was
taken for biochemical analysis of enzymes. Glutathione (GSH) was
estimated using the method of Buetler and Kelly (1963). Catalase (CAT) was determined according to the method of Goth (1991). Superoxide dismutase was determined according to Beauchamp and Fridovich (1971). Lipid peroxidation was measured according to Ruiz-Larrea et al. (1994).
Statistical analysis
The data were expressed as mean ± standard error. Data were analyzed by using Student’s t-test and homogeneity of variances (Levene test) using statistical program of social science (SPSS) software for windows. P < 0.05, P < 0.01 and P < 0.001 values were used.
Results
Histological results
Light microscope observations
Liver
of control rat showed normal lobular architecture. The hepatic cells
were found arranged in strands around the central vein and sinusoids
appeared containing Kupffer cells (Fig. 1). Liver obtained from rats treated with rosemary extract exhibited the normal structure. Animals treated with CdCl2 for 4 weeks revealed that the hepatic tissue was injured. The hepatic blood vessels were enlarged and congested (Fig. 2). Perivascular inflammatory infiltrates were observed (Fig. 3). Most of the hepatocytes showed cytoplasmic vacuolation with pyknotic nuclei (Fig. 4).
After 8 weeks of treatment, these changes became intensive. The hepatic
architecture was lost, masses of leukocytic infiltration were observed (Fig. 5) and cytoplasmic vacuolation was noticed in most cells. Fatty infiltrations of different sized fat droplets were observed (Fig. 6). After treatment with CdCl2
and rosemary, an improvement was recorded in the hepatic tissue. In
these specimens, the hepatocytes appeared normal with an increase of
binucleated cells, few veins showed congestion and the sinusoids
appeared with activated kupffer cells (Fig. 7).
Ultrastructural observations
Liver
sections of control animals examined under electron microscope showed
normal hepatocytes, each hepatocyte contained rounded nucleus containing
one nucleolus. The nucleus was surrounded by nuclear envelop. The
chromatin consists of dense clumping heterochromatin and lightly stained
euchromatin. The cytoplasm appeared granular containing rounded and
elongated mitochondria, rough endoplasmic reticulum, glycogen particles
and Golgi apparatus (Fig. 8).
Many alternations were observed in hepatocytes of animals treated with CdCl2. The nucleus was abnormal and showed outgrowth projections (Fig. 9).
Rough endoplasmic reticulum was dilated and mitochondria appeared with
disrupted cristae. Kupffer cell appeared in phagocytosis stage and
cytoplasmic vacuoles were observed (Fig. 10).
After 8 weeks more damage was exhibited in the hepatocytes. Most of the
nuclei were pyknotic and mitochondria became more degenerated (Fig. 11). Fat vacuoles were abundant (Fig. 11). Hepatocytes of rats given CdCl2 and rosemary revealed that the nucleus appeared normal with normal envelop, but with little heterochromatin and euchromatin (Fig. 12). Mitochondria and rough endoplasmic reticulum were normal. Binucleated hepatocytes were abundant (Fig. 13).
Biochemical results
Data in Figure 14, Figure 15 and Figure 16
show that there are no significant differences in levels of GSH, SOD
and CAT in both control and rosemary extract groups. Animals treated
with CdCl2 revealed that levels of GSH, SOD and CAT decreased significantly (P < 0.001) after 4, 8 weeks. On the other hand, treating animals with CdCl2 and rosemary extract led to an increase in these antioxidant enzymes. This increase was highly significant (P < 0.001) after 8 weeks of treatments. Lipid peroxidation marker (MDA) decreased significantly in rats given CdCl2 ( Fig. 17). Animals treated with CdCl2 and rosemary showed a significant decrease in MDA.
Discussion
The present results showed that CdCl2
administration caused hepatotoxicity in rats. Histological and
ultrastructural results revealed many alterations. In agreement with
these results, Gaurav et al. (2010)
observed cytoplasmic vacuolization, karyolysis, pyknosis and
centrilobular necrosis in liver of rats after receiving single dose of
CdCl2. Marked changes in liver of male mice such as swelling
and massive fatty degeneration in hepatocytes and large vacuoles in
cytoplasm, pyknotic nuclei with comparatively poor staining affinity,
due to damage of the hepatic cells were recorded after treatment with
CdCl2. Apoptosis was observed by Gathwan et al. (2012).
Liver of cadmium treated female rat showed degeneration of liver,
inflammatory leukocyte infiltration near the blood vessel and blood
sinusoid dilatation (Mohammad et al., 2013).
Dilated and congested central vein with massive hemorrhage extending to
the nearby cells, mild periductal fibrosis around bile duct in the
portal area, focal degenerative and necrotic changes along with
inflammatory cell infiltration were noticed in male guinea pigs that
received CdCl2 (Azab et al., 2014). Fatty degeneration was observed in liver of CdCl2-treated rats. Brody et al. (1961)
attributed the fatty changes in the liver to excessive mobilization of
free fatty acids from the fat depots induced by the lipolytic effects of
the increased circulating catecholamines and the centrilobular necrosis
to the catecholamine-induced decrease in hepatic flow.
Concerning
the ultrastructure results, the current study revealed that cadmium
chloride induced many alternations in liver tissue when examined by
electron microscope, similar to results obtained by Kim and Yoon (2000),
who reported that cadmium chloride induced nuclear membrane rupture and
lysosomes were observed in cytoplasm, mitochondria destruction and
glycogen appeared in liver sections of mouse. Cadmium chloride caused
fragmentation in rough endoplasmic reticulum, and swollen mitochondria
lost their cristae in liver of rats (Abdel-Moneim and Ghafeer, 2007).
Damage of the nuclear membrane, regression of mitochondrial cisternae,
deterioration of rough endoplasmic reticulum, loss of glycogen
particles, and proliferation of smooth endoplasmic reticulum with
condensation of the nuclear chromatins appeared in liver of rats treated
with CdCl2. The hepatocytes also appeared to contain many cytoplasmic fat droplets and many vacuoles (Mahran et al., 2011). According to Leo et al. (1982),
the vacuolation of the liver cells can be attributed to swelling of the
mitochondria and proliferation of the endoplasmic reticulum.
The
obtained results showed an increase in lipid peroxidation marker MDA
and decrease in the antioxidant enzymes, CAT and SOD. These results are
similar to those of Ramesh and Satakopan (2010) who reported a decrease in CAT and SOD, and increase in MDA in liver of rats treated with CdCl2.Bekheet et al. (2011)
recorded a decrease in the activities of SOD and CAT, with a
significant increase in the level of MDA in liver of rats exposed to
CdCl2. Acute exposure to CdCl2 leads to an increase in lipid peroxidation (LPO), with a decrease in levels of CAT and SOD enzymes in liver of mice (Paul et al., 2013). The non-enzymatic antioxidant, GSH decreased in liver of rats treated with CdCl2.Abdel-Moneim and Ghafeer (2007) reported a decline in GSH activity in liver of adult male rats treated with cadmium chloride. Administration of CdCl2 led to a significant decrease in liver GSH (Ramesh and Satakopan, 2010). Non-enzymatic (GSH) antioxidants were significantly decreased in liver of CdCl2 treated rats (Kumar et al., 2010). Depletion in reduced glutathione (GSH) in liver of rats injected with CdCl2 was observed by Ibrahim (2013).
This work revealed that rosemary aqueous extract ameliorated the toxic effects of CdCl2
on liver. This was manifested by the histological observation, decrease
of MDA and increase in liver CAT, SOD, and GSH. These results are in
agreement with Parmar et al. (2011),
who reported that treatment with aqueous extract of rosemary leaves
prevents oxidative stress caused by Dimethylbenz[a]anthracene (DMBA). Abd El-Ghany et al. (2012)
found that after rosemary treatment almost healthy liver with no
histopathological changes was observed in rats treated with CCl4. Rosemary powder and extracts caused an increase in SOD and a decrease in MDA in patients with hepatic failure caused by CCl4 (Abd El-Ghany et al., 2012). Virk et al. (2013) reported that rosemary aqueous extract given with CdCl2 caused a decrease in MDA, increase in SOD in liver. Saito et al. (2004) found that rosemary extract had antioxidant properties. The anti-inflammatory and antitumor action of rosemary was reported by Peng et al., 2007 and Park et al., 2014.
Rosmarinic acid is one of the rosemary components acting as a
preventive agent for fibrosis progression in liver partly due to its
activity of anti-proliferation and pro-apoptosis (Zhang et al., 2011).
Rosemary is a good scavenger of peroxyl radicals and it is able to
block the formation of the hydroxyl radical generated in non-lipid
systems (Haraguchi et al., 1995). In this work rosemary extract was found to ameliorate the alternations occurring in liver by CdCl2 and this may be attributed to its antioxidative action.
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this work.
Funding
There are no funding sources to declare.
References
- Abd El-Ghany et al., 2012
- Biological effects of yoghurt with rosemary on injured liver rats
- Aust. J. Basic Appl. Sci., 6 (2012), pp. 525–532
- Abdel-Moneim and Ghafeer, 2007
- The potential protective effect of natural honey against cadmium-induced hepatotoxicity and nephrotoxicity
- Mansoura J. Forensic Med. Clin. Toxicol., 15 (2007), pp. 75–98
- |
- Aguilar et al., 2008
- Use of rosemary extracts as a food additive scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food
- EFSA J., 721 (2008), pp. 4–29
- Al-Sereiti et al., 1999
- Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials
- Indian J. Exp. Biol., 37 (1999), pp. 124–131
- Azab et al., 2014
- Nephro-protective effects of curcumin, rosemary and propolis against gentamicin induced toxicity in guinea pigs: morphological and biochemical study
- Am. J. Clin. Exp. Med., 2 (2014), pp. 28–35
- Beauchamp and Fridovich, 1971
- Superoxide dismutase: improved assays and an assay applicable to acrylamide gels
- Anal. Biochem., 44 (1971), pp. 276–287
- | | |
- Bekheet et al., 2011
- Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage
- Tissue Cell, 43 (2011), pp. 337–343
- | |
- Brody et al., 1961
- Alteration of carbon tetrachloride-induced pathological changes in the rat by spinal transaction, adrenalectomy and adrenergic blocking agent
- J. Pharmacol. Exp. Ther., 131 (1961), pp. 334–340
- Buetler and Kelly, 1963
- The effect of sodium on RBC glutathione
- J. Experientia, 19 (1963), pp. 96–103
- Chen et al., 2014
- The effects of railway transportation on the enrichment of heavy metals in the artificial soil on railway cut slopes
- Environ. Monit. Assess., 186 (2014), pp. 1039–1049
- | |
- Czinner et al., 2001
- The in vitro effects of Helichrysi flos on microsomal lipid peroxidation
- J. Ethnopharmacol., 77 (2001), pp. 31–35
- | | |
- Dorman et al., 2003
- Characterisation of the antioxidant properties of de-odorized aqueous extracts from selected Lamiaceae herbs
- Food Chem., 83 (2003), pp. 255–262
- | | |
- Du et al., 2014
- Cadmium-induced microsatellite instability in the kidneys and leukocytes of C57BL/6J mice
- Environ. Toxicol., 56 (2014), pp. 13–89 http://dx.doi.org/10.1002/tox.21946
- Edwards et al., 2013
- Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms
- BMC Microbiol., 15 (2013), pp. 161–171
- Faixov and Faix, 2008
- Biological effects of rosemary (Rosmarinus officinalis L.) essential oil: a review
- Folia Vet., 52 (2008), pp. 135–139
- Fan et al., 2009
- Cadmium accumulation in potato tubers produced in Quebec
- Can. J. Soil Sci., 89 (2009), pp. 435–443
- | |
- García-Esquinas et al., 2014
- Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study
- Environ. Health Perspect., 122 (2014), pp. 363–370
- |
- Gathwan et al., 2012
- Heavy metals induce apoptosis in liver of mice
- Int. J. Appl. Biol. Pharm. Technol., 3 (2012), pp. 146–150
- |
- Gaurav et al., 2010
- Antioxidative and antiperoxidative effects of Spirulina platensis against cadmium induced hepatotoxicity in rats
- Ann. Biol. Res., 1 (2010), pp. 121–127
- |
- Gill et al., 2013
- Importance of nitric oxide in cadmium stress tolerance in crop plants
- Plant Physiol. Biochem., 63 (2013), pp. 254–261
- | | |
- Goth, 1991
- A simple method for determination of serum catalase activity, and revision of reference range
- Clin. Chim. Acta, 196 (1991), pp. 143–152
- Gougoulias et al., 2014
- Influence of food allowance in heavy metal’s concentration in raw milk production of several feed animals
- Emirates J. Food Agric., 26 (2014), pp. 828–834
- Guo and Zhou, 2006
- Evaluation of heavy metal contamination in Phaeozem of northeast China
- Environ. Geochem. Health, 28 (2006), pp. 331–340
- | |
- Gupta and Sharma, 2006
- Plants as natural antioxidants
- Nat. Prod. Radiance, 5 (2006), pp. 326–334
- |
- Haraguchi et al., 1995
- Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis
- Planta Med., 61 (1995), pp. 333–336
- | |
- Hosseinimehr, 2014
- Beneficial effects of natural products on cells during ionizing radiation
- Rev. Environ. Health (2014) http://dx.doi.org/10.1515/reveh-2014-0037
- Ibrahim, 2013
- Possible protective effect of kombucha tea ferment on cadmium chloride induced liver and kidney damage in irradiated rats
- Int. J. Biol. Life Sci., 9 (2013), pp. 7–12
- Kadri et al., 2011
- Chemical constituents and antioxidant properties of Rosmarinus officinalis L. essential oil cultivated from South-Western Tunisia
- J. Med. Plants. Res., 5 (2011), pp. 5999–6004
- |
- Karnovsky, 1965
- A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy
- J. Cell Biol., 27 (1965), pp. 137–138A
- |
- Kim and Yoon, 2000
- Effects of squalene on mouse liver toxicity with cadmium
- Korean J. Electron Microsc., 3 (2000), pp. 141–152
- Kumar et al., 2010
- Antioxidant effect of green tea extract in cadmium chloride intoxicated rats
- Adv. Appl. Sci. Res., 1 (2010), pp. 9–13
- Kyriakou et al., 2013
- Gadolinium chloride pretreatment ameliorates acute cadmium-induced hepatotoxicity
- Toxicol. Ind. Health, 29 (2013), pp. 624–632
- | |
- Leo et al., 1982
- Hepatotoxicity of vitamin A and ethanol in the rat
- Gastroenterology, 82 (1982), pp. 194–205
- |
- Machado et al., 2013
- Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L.
- Food Chem., 136 (2013), pp. 999–1005
- | | |
- Mahran et al., 2011
- Protective effect of zinc (Zn) on the histology and histochemistry of liver and kidney of albino rat treated with cadmium
- J. Cytol. Histol., 2 (2011), pp. 1–9
- |
- Mohammad et al., 2013
- Ameliorative effect of the aqueous extract of zingiber officinale on the cadmium-induced liver and kidney injury in female rats
- Jordan J. Biol. Sci., 6 (2013), pp. 231–234
- Ohta et al., 2000
- Relationship between renal dysfunction and bone metabolism disorder in male rats after long-term oral quantitative cadmium administration
- Ind. Health, 38 (2000), pp. 339–355
- | |
- Park et al., 2014
- Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells
- Int. J. Oncol., 44 (2014), pp. 1309–1315
- |
- Parmar et al., 2011
- Anti-tumor and anti-oxidative activity of Rosmarinus officinalis in 7,12 dimethyl benz(a) anthracene induced skin carcinogenesis in mice
- Am. J. Biomed. Sci., 3 (2011), pp. 199–209
- Paul et al., 2013
- Poly (lactide-co-glycolide) nano-encapsulation of chelidonine, an active bioingredient of greater celandine (Chelidonium majus), enhances its ameliorative potential against cadmium induced oxidative stress and hepatic injury in mice
- Environ. Toxicol. Pharmacol., 36 (2013), pp. 937–947
- | | |
- Peng et al., 2007
- Supercritical fluid extracts of rosemary leaves exhibited potent anti-inflammation and anti-tumor effects
- Biosci. Biotechnol. Biochem., 71 (2007), pp. 2223–2232
- | |
- Ramesh and Satakopan, 2010
- Antioxidant activities of hydroalcoholic extract of ocimum sanctum against cadmium induced toxicity in rats
- Indian J. Clin. Biochem., 5 (2010), pp. 307–310
- | |
- Ruiz-Larrea et al., 1994
- Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes
- Steroids, 59 (1994), pp. 383–388
- Saito et al., 2004
- Effects of a novel gaseous antioxidative system containing a rosemary extract on the oxidation induced by nitrogen dioxide and ultraviolet radiation
- Biosci. Biotechnol. Biochem., 68 (2004), pp. 781–786
- | |
- Schwarz et al., 2014
- Cadmium exposure from food: the German LExUKon project
- Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 31 (2014), pp. 1038–1051
- |
- Singh et al., 2010
- Protective effect of curcumin on cadmium chloride induced nephrotoxicity in Swiss albino mice
- J. Herb. Med. Toxicol., 4 (2010), pp. 215–219
- |
- Valverde et al., 2000
- Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice
- Mutagenesis, 15 (2000), pp. 109–114
- | |
- Virk et al., 2013
- Ameliorative effects of Emblica officinalis and Rosmarinus officinalis on cadmium-induced oxidative stress in Wistar rats
- J. Med. Plant Res., 7 (2013), pp. 805–818
- Wang et al., 2014
- Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte
- Biol. Trace Elem. Res., 161 (2014), pp. 180–189
- | |
- Zhang et al., 2001
- Evaluation of cadmium and other metal losses from various municipal wastes during incineration disposal
- Environ. Pollut., 115 (2001), pp. 253–260
- | | |
- Zhang et al., 2011
- Rosmarinic acid inhibits proliferation and induces apoptosis of hepatic stellate cells
- Biol. Pharm. Bull., 34 (2011), pp. 343–348
- | |
- Zhang et al., 2012
- Impacts of lead/zinc mining and smelting on the environment and human health in China
- Environ. Monit. Assess., 184 (2012), pp. 2261–2273
- | |
Copyright © 2015 Production and hosting by Elsevier B.V.