twitter

Tuesday, 12 May 2015

Composer birthdays Irving Berlin 1888 , May 11

https://youtu.be/B-7-EHUO9sI

Volume 73, Issue 4, 23 February 2012, Pages 633–637
NeuroView

What Does It Mean to Be Musical?

Under an Elsevier user license
  Open Archive
Music can be seen as a model system for understanding gene × environment interactions and how these can influence neurocognitive development. The concept of musicality, however, is underspecified and not well understood. Here, I propose a framework for defining musicality to provide a foundation for studying the contributions of biological and environmental factors.

Main Text

Musical ability is popularly regarded to be innate: one either is or is not born with musical talent. Increasingly, neuroscientists are collaborating with geneticists to understand the links between genes, brain development, cognition, and behavior (Ebstein et al., 2010 and Posner et al., 2011). Music can be seen as a model system for understanding what genes can accomplish and how they relate to experience. On the practical side, identifying genetic components that underlie musical ability can also help us to predict who will succeed or, more interestingly, what types of instruction will be most successful for individuals according to their genetic-cognitive profiles. In all domains, successful genotyping requires an accurately described phenotype. Unfortunately, the latter has not yet been accomplished for music, creating a significant hurdle to further progress. Part of the difficulty in describing the musical phenotype is its heterogeneity, the wide variety of ways in which musicality presents itself (Sloboda, 2008). My goal in this article is to review those factors that might be associated with the phenotype and to discuss definitions, measurement, and accuracy, three common obstacles in understanding the genetics of complex behavioral phenomena (Ebstein et al., 2010), with the hope that this may stimulate discussion and future work on the topic.

The Functional Neuroanatomy of Music

We now know that music activates regions throughout the brain, not just a single “music center.” As with vision, music is processed component by component, with specific neural circuits handling pitch, duration, loudness, and timbre. Higher brain centers bring this information together, binding it into representations of contour, melody, rhythm, tempo, meter, and, ultimately, phrases and whole compositions. The idea that music processing can be broken down into component operations was first proposed as a conceptual tool by cognitive theorists and has been confirmed by neuroimaging studies (Levitin and Tirovolas, 2009).
The early distinction that music processing is right hemisphere lateralized and that language is left hemisphere lateralized has been modified by a more nuanced understanding. Pitch is represented by tonotopic maps, virtual piano keyboards stretched across the cortex that represent pitches in a low-to-high spatial arrangement. The sounds of different musical instruments (timbres) are processed in well-defined regions of posterior Heschl's gyrus and superior temporal sulcus (extending into the circular insular sulcus). Tempo and rhythm are believed to invoke hierarchical oscillators in the cerebellum and basal ganglia. Loudness is processed in a network of neural circuits beginning at the brain stem and inferior colliculus and extending to the temporal lobes. The localization of sounds and the perception of distance cues are handled by a network that attends to (among other cues) differences in interaural time of arrival, changes in frequency spectrum, and changes in the temporal spectrum, such as are caused by reverberation. One can attain world-class expertise in one of these component operations without necessarily attaining world-class expertise in others.
Higher cognitive functions in music, such as musical attention, musical memory, and the tracking of temporal and harmonic structure, have been linked to particular neural processing networks. Listening to music activates reward and pleasure circuits in the nucleus accumbens, ventral tegmental area, and amygdala, modulating production of dopamine (Menon and Levitin, 2005). The generation of musical expectations is a largely automatic process in adults, developing in childhood, and is believed to be critical to the enjoyment of music (Huron, 2006). Tasks that require the tracking of tonal, harmonic, and rhythmic expectations activate prefrontal regions, in particular Brodmann areas 44, 45, and 47, and anterior and posterior cingulate gyrus as part of a cortical network that also involves limbic structures and the cerebellum.
Musical training is associated with changes in gray matter volume and cortical representation. Musicians exhibit changes in the white matter structure of the corticospinal tract, as indicated by reduced fractional anisotropy, which suggests increased radial diffusivity. Cerebellar volumes in keyboard players increase as a function of practice. Learning to name notes and intervals is accompanied by a leftward shift in processing as musical concepts become lexicalized. Writing music involves circuits distinct from other kinds of writing, and there are clinical reports of individuals who have musical agraphia without textual agraphia. Double dissociations have also been reported between musical agraphia and musical alexia. Indeed, the patient literature is rich with accounts of individuals who have lost one specific aspect of musical processing while others remain intact, bolstering claims of distinct, componential processing of music (Marin and Perry, 1999).